Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provably Time-Optimal Cooling of Markovian Quantum Systems (2403.05285v1)

Published 8 Mar 2024 in quant-ph and math.OC

Abstract: We address the problem of cooling a Markovian quantum system to a pure state in the shortest amount of time possible. Here the system drift takes the form of a Lindblad master equation and we assume fast unitary control. This setting allows for a natural reduction of the control system to the eigenvalues of the state density matrix. We give a simple necessary and sufficient characterization of systems which are (asymptotically) coolable and present a powerful result which allows to considerably simplify the search for optimal cooling solutions. With these tools at our disposal we derive explicit provably time-optimal cooling protocols for rank one qubit systems, inverted $\Lambda$-systems on a qutrit, and a certain system consisting of two coupled qubits.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Heat-Bath Algorithmic Cooling with Optimal Thermalization Strategies. Quantum, 3:188, 2019.
  2. J.-P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability Theory. Springer, Berlin Heidelberg, 1984.
  3. I. Bengtsson and K. Życzkowski. Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge, 2nd edition edition, 2017.
  4. Algorithmic Cooling and Scalable NMR Quantum Computers. Proc. Natl. Acad. Sci., 99:3388–3393, 2002.
  5. Qubit Architecture with High Coherence and Fast Tunable Coupling. Phys. Rev. Lett, 113:220502, 2014.
  6. D. D’Alessandro. Introduction to Quantum Control and Dynamics. Chapman and Hall/CRC, New York, 2nd edition, 2021.
  7. G. Dirr and U. Helmke. Lie Theory for Quantum Control. GAMM-Mitteilungen, 31:59–93, 2008.
  8. Lie-Semigroup Structures for Reachability and Control of Open Quantum Systems: Kossakowski-Lindblad Generators Form Lie Wedge to Markovian Channels. Rep. Math. Phys., 64:93–121, 2009.
  9. Reachable Sets from Toy Models to Controlled Markovian Quantum Systems. Proc. IEEE Conf. Decision Control (IEEE-CDC), 58:2322, 2019.
  10. D.P. DiVincenzo. The Physical Implementation of Quantum Computation. Fortschr. Phys., 48:771–783, 2000.
  11. D. Elliott. Bilinear Control Systems: Matrices in Action. Springer, London, 2009.
  12. Completely Positive Dynamical Semigroups of N𝑁Nitalic_N-Level Systems. J. Math. Phys., 17:821–825, 1976.
  13. A. Horn. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix. Am. J. Math., 76:620–630, 1954.
  14. M. Horodecki and J. Oppenheim. Fundamental Limitations for Quantum and Nanoscale Thermodynamics. Nat. Commun., 4:2059, 2013.
  15. Vertex-Facet Incidences of Unbounded Polyhedra. Adv. Geom., 1:23–36, 2001.
  16. V. Jurdjevic. Geometric Control Theory. Cambridge University Press, Cambridge, 1997.
  17. Singular Extremals for the Time-Optimal Control of Dissipative Spin 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG Particles. Phys. Rev. Lett., 104:083001, 2010.
  18. Fast Laser Cooling Using Optimal Quantum Control. Phys. Rev. A, 104:043106, 2021.
  19. G. Lindblad. On the Generators of Quantum Dynamical Semigroups. Commun. Math. Phys., 48:119–130, 1976.
  20. Superfast Laser Cooling. Phys. Rev. Lett., 104:183001, 2010.
  21. E. Malvetti. Bipartite Quantum Systems with Fast Local Unitary Control, 2023. arXiv:2401.07024.
  22. E. Malvetti. Computing Common Eigenvectors and Simultaneous Triangulation, 2023. arXiv:2309.14344.
  23. E. Malvetti. Optimal Control of a Markovian Qubit with Unitary Control, 2024. In preparation.
  24. Reduced Control Systems on Symmetric Lie Algebras, 2023. arXiv:2307.13664.
  25. Reachability, Coolability, and Stabilizability of Open Markovian Quantum Systems with Fast Unitary Control, 2023. arXiv:2308.00561, submitted to SIAM J. Control Optim.
  26. Inequalities: Theory of Majorization and Its Applications. Springer, New York, 2nd edition, 2011.
  27. Resolved-Sideband Raman Cooling of a Bound Atom to the 3D Zero-Point Energy. Phys. Rev. Lett., 75:4011–4014, 1995.
  28. Ensemble Quantum Computation and Algorithmic Cooling in Optical Lattices. Fortschritte der Physik, 54:686–701, 2006.
  29. Steering the Eigenvalues of the Density Operator in Hamiltonian-Controlled Quantum Lindblad Systems. IEEE Trans. Automat. Contr., 63:672–681, 2018.
  30. Physical Limits of Heat-Bath Algorithmic Cooling. Phys. Rev. Lett., 94:120501, 2005.
  31. Exploring the Limits of Open Quantum Dynamics I: Motivation, First Results from Toy Models to Applications. In Proc. MTNS, page 1069, 2022. arXiv:2003.06018.
  32. I. Schur. Über eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsber. Berl. Math. Ges., 22:9–20, 1923.
  33. Optimal Control of Quantum Dissipative Dynamics: Analytic Solution for Cooling the Three-Level ΛΛ\Lambdaroman_Λ System. Phys. Rev. A, 69:053408, 2004.
  34. G. Smirnov. Introduction to the Theory of Differential Inclusions. Amer. Math. Soc., Providence, Rhode Island, 2002.
  35. F. vom Ende. Reachability in Controlled Markovian Quantum Systems: An Operator-Theoretic Approach. PhD thesis, TU Munich, 2020.
  36. Exploring the Limits of Controlled Markovian Quantum Dynamics with Thermal Resources. Open Syst. Inf. Dyn., 30(1):2350005, 2023.
  37. Sisyphus Cooling of a Bound Atom. J. Opt. Soc. Am. B, 9:32–42, 1992.
  38. A Tunable Quantum Dissipator for Active Resonator Reset in Circuit QED. Quant. Sci. Technol., 4:025001, 2019.
  39. H. Yuan. Characterization of Majorization Monotone Quantum Dynamics. IEEE Trans. Automat. Contr., 55:955–959, 2010.
  40. G.M. Ziegler. Lectures on Polytopes. Springer, New York, 2007.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com