Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Decoupled Approach for Composite Sparse-plus-Smooth Penalized Optimization (2403.05204v2)

Published 8 Mar 2024 in eess.SP

Abstract: We consider a linear inverse problem whose solution is expressed as a sum of two components: one smooth and the other sparse. This problem is addressed by minimizing an objective function with a least squares data-fidelity term and a different regularization term applied to each of the components. Sparsity is promoted with an $\ell_1$ norm, while the smooth component is penalized with an $\ell_2$ norm. We characterize the solution set of this composite optimization problem by stating a Representer Theorem. Consequently, we identify that solving the optimization problem can be decoupled by first identifying the sparse solution as a solution of a modified single-variable problem and then deducing the smooth component. We illustrate that this decoupled solving method can lead to significant computational speedups in applications, considering the problem of Dirac recovery over a smooth background with two-dimensional partial Fourier measurements.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com