A universal phase-field mixture representation of thermodynamics and shock wave mechanics in porous soft biologic continua (2403.04995v1)
Abstract: A continuum mixture theory is formulated for large deformations, thermal effects, phase interactions, and degradation of soft biologic tissues. Such tissues consist of one or more solid and fluid phases and can demonstrate nonlinear anisotropic elastic, viscoelastic, thermoelastic, and poroelastic physics. Under extremely large or rapid deformations, for example impact or shock loading, tissues may fracture, tear, or rupture. Mechanisms are encompassed in a universal, thermodynamically consistent formulation that combines the continuum theory of mixtures with phase-field mechanics of fracture. A metric tensor of generalized Finsler space supplies geometric insight on effects rearrangements of microstructure, for example degrading collagen fibers. Governing equations are derived, and energy potentials and kinetic laws posited, for generic soft porous tissues with solid and liquid or gas phases. Shock waves are modeled as singular surfaces; Hugoniot states and shock decay are studied analytically. Suitability of the framework for representing blood, skeletal muscle, and liver is demonstrated. Insight into physics presently unresolved by experiments is obtained.
- Y.-C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2nd ed. (Springer, New York, 1993).
- J. M. Wilgeroth, P. Hazell, and G. J. Appleby-Thomas, in AIP Conf. Proc., Vol. 1426 (2012) p. 139.
- J. D. Clayton, R. J. Banton, and A. D. Freed, in AIP Conf. Proc., Vol. 2272 (2020) p. 040001.
- T. Ricken, U. Dahmen, and O. Dirsch, Biomech. Mod. Mechanobio. 9, 435 (2010).
- Y. Zheng, Y. Jiang, and Y. Cao, J. Mech. Phys. Solids 150, 104339 (2021).
- G. A. Holzapfel and R. W. Ogden, Phil. Trans. R. Soc. A 367, 3445 (2009).
- A. Zubelewicz, Sci. Rep. 3, 1323 (2013).
- P. V. Liedekerke, E. Tijskens, and H. Ramon, Phys. Rev. E 81, 061906 (2010).
- R. Waugh and E. A. Evans, Biophys. J. 26, 115 (1979).
- G. A. Holzapfel, T. C. Gasser, and R. W. Ogden, J. Elast. 61, 1 (2000).
- G. Chagnon, M. Rebouah, and D. Favier, J. Elast. 120, 129 (2015).
- M. B. Rubin and S. R. Bodner, Int. J. Solids Struct. 39, 5081 (2002).
- O. Gultekin, G. Sommer, and G. A. Holzapfel, Comp. Meth. Biomech. Biomed. Eng. 19, 1647 (2016).
- T. C. Gasser, R. W. Ogden, and G. A. Holzapfel, J. R. Soc. Interface 3, 15 (2006).
- J. Planas, G. V. Guinea, and M. Elices, Phys. Rev. E 76, 041903 (2007).
- M. Kalhofer-Kochling, E. Bodenschatz, and Y. Wang, Phys. Rev. Appl. 13, 064039 (2020).
- D. Ito, E. Tanaka, and S. Yamamoto, J. Mech. Behav. Biomed. Mater. 3, 85 (2010).
- W. Li, J. Med. Bio. Eng. 36, 285 (2016).
- A. Raina and C. Miehe, Proc. Appl. Math. Mech. 15, 103 (2015).
- L. Yang and K. Dayal, Appl. Phys. Lett. 96 (2010).
- J. D. Clayton and J. Knap, Physica D 240, 841 (2011).
- A. Acharya and J. Vinals, Phys. Rev. B 102, 064109 (2020).
- A. Karma, D. Kessler, and H. Levine, Phys. Rev. Lett. 87, 045501 (2001).
- H. Henry and H. Levine, Phys. Rev. Lett. 93, 105504 (2004).
- V. I. Marconi and E. A. Jagla, Phys. Rev. E 71, 036110 (2005).
- R. Spatschek, C. Muller-Gugenberger, and E. Brener, Phys. Rev. E 75, 066111 (2007).
- J. D. Clayton and J. Knap, Int. J. Fract. 189, 139 (2014).
- V. I. Levitas, J. Mech. Phys. Solids 70, 154 (2014).
- V. I. Levitas, A. V. Idesman, and A. K. Palakala, J. Appl. Phys. 110 (2011).
- D. Santillan, J.-C. Mosquera, and L. Cueto-Felgueroso, Phys. Rev. E 96, 053002 (2017).
- M. A. Biot, J. Appl. Phys. 12, 155 (1941).
- C. A. Truesdell and R. A. Toupin, The classical field theories, in Handbuch der Physik, Vol. III, edited by S. Flugge (Springer, Berlin, 1960) pp. 226–793.
- R. M. Bowen, Theory of mixtures, in Continuum Physics, Vol. 3, edited by A. C. Eringen (Academic Press, New York, 1976) pp. 1–127.
- R. M. Bowen, Int. J. Eng. Sci. 20, 697 (1982).
- M. Yang and L. A. Taber, J. Biomech. 24, 587 (1991).
- W. Ehlers, Foundations of multiphasic and porous materials, in Porous Media: Theory, Experiments and Numerical Applications, edited by W. Ehlers and J. Bluhm (Springer, Berlin, 2002) pp. 3–86.
- R. A. Regueiro, B. Zhang, and S. L. Wozniak, Comp. Meth. Eng. Sci. 98, 1 (2014).
- C. W. MacMinn, E. R. Dufresne, and J. S. Wettlaufer, Phys. Rev. Appl. 5, 044020 (2016).
- Z. A. Wilson and C. M. Landis, J. Mech. Phys. Solids 96, 264 (2016).
- H. S. Suh and W. Sun, Comp. Meth. Appl. Mech. Eng. 387, 114182 (2021).
- K. Terzaghi, Theoretical Soil Mechanics (John Wiley and Sons, New York, 1943).
- W. Ehlers and A. Wagner, Arch. Appl. Mech. 89, 609 (2021).
- R. M. Bowen and T. W. Wright, Rend. Circ. Matematico Palermo 21, 209 (1972).
- M. R. Baer and J. W. Nunziato, Int. J. Multiphase Flow 12, 861 (1986).
- D. Madjarevic and S. Simi, Phys. Rev. E 100, 023119 (2019).
- J. D. Clayton, Symmetry 15, 1828 (2023).
- K. Takamizawa and T. Matsuda, J. Appl. Mech. 57, 321 (1990).
- A. Yavari, J. Nonlinear Sci. 20, 781 (2010).
- J. D. Clayton, J. Geom. Phys. 112, 118 (2017a).
- J. D. Clayton, Zeit. Angew. Math. Phys. 68, 9 (2017b).
- A. Bejancu, Finsler Geometry and Applications (Ellis Horwood, New York, 1990).
- Y. Takano and H. Koibuchi, Phys. Rev. E 95, 042411 (2017).
- S. Ikeda, Tensor, N.S. 27, 361 (1973).
- S. Ikeda, J. Math. Phys. 22, 1211 (1981).
- V. A. Eremeyev and V. Konopinska-Zmyslowska, Symmetry 12, 1632 (2020).
- J. D. Clayton, Int. J. Geom. Meth. Mod. Phys. 15, 1850113 (2018).
- J. D. Clayton, Math. Mech. Solids 27, 910 (2022a).
- B. D. Coleman and M. E. Gurtin, Proc. R. Soc. Lond. A 292, 562 (1966).
- P. J. Chen and M. E. Gurtin, Phys. Fluids 14, 1091 (1971).
- R. Bowen and P. Chen, Arch. Ration. Mech. Anal. 53, 277 (1974).
- J. D. Clayton, Int. J. Eng. Sci. 175, 103675 (2022b).
- H. Rund, The Differential Geometry of Finsler Spaces (Springer-Verlag, Berlin, 1959).
- S. Amari, A theory of deformations and stresses of ferromagnetic substances by Finsler geometry, in RAAG Memoirs, Vol. 3, edited by K. Kondo (Tokyo, 1962) pp. 257–278.
- M. Destrade and G. Saccomandi, Phys. Rev. E 72, 016620 (2005).
- A. L. Ortega, M. Lombardini, and D. J. Hill, Phys. Rev. E 84, 056307 (2011).
- M. E. Gurtin, Physica D 92, 178 (1996).
- H. Rund, Monatshefte fur Math. 79, 233 (1975).
- J. D. Clayton, Differential Geoemtry and Kinematics of Continua (World Scientific, Singapore, 2014).
- A. E. Green and R. S. Rivlin, Zeit. Angew. Math. Phys. 15, 290 (1964).
- J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, New Jersey, 1983).
- J. Casey, Int. J. Struct. Changes Solids 3, 61 (2011).
- J. D. Clayton, Int. J. Fract. 208, 53 (2017c).
- J. D. Clayton, Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids (Springer, Cham, 2019).
- J. D. Clayton, J. Mech. Phys. Solids 157, 104633 (2021).
- K. Y. Volokh, Acta Biomater. 2, 493 (2006).
- B. D. Coleman and W. Noll, Arch. Ration. Mech. Anal. 13, 167 (1963).
- B. D. Coleman and M. E. Gurtin, J. Chem. Phys. 47, 597 (1967).
- J.-P. Poirier and A. Tarantola, Phys. Earth Planet. Inter. 109, 1 (1998).
- J. D. Clayton, Int. J. Eng. Sci. 79, 1 (2014b).
- J. D. Clayton and A. D. Freed, Mech. Soft Mater. 2, 3 (2020a).
- G. A. Holzapfel and J. C. Simo, Int. J. Solids Struct. 33, 3019 (1996).
- G. A. Holzapfel, Comp. Meth. Appl. Mech. Eng. 39, 3903 (1996).
- G. A. Holzapfel, T. C. Gasser, and M. Stadler, Eur. J. Mech. A Sol. 21, 441 (2002).
- J. D. Clayton and A. D. Freed, Acta Mech. 231, 33319 (2020b).
- J. Stalhand, R. M. McMeeking, and G. A. Holzapfel, J. Mech. Phys. Solids 94, 490 (2016).
- G. S. Kell, J. Chem. Eng. Data 20, 97 (1975).
- G.-J. Guo and Y.-G. Zhang, Mol. Phys. 99, 283 (2001).
- A. Morro, Arch. Mech. 32, 145 (1980a).
- A. Morro, Arch. Mech. 32, 193 (1980b).
- H. Nagoya, T. Obara, and K. Takayama, Underwater shock propagation and focusing in inhomogeneous media, in Shockwaves at Marseille, Vol. 3, edited by R. Brun and L. Z. Dumitrescu (Springer-Verlag, Berlin, 1995) pp. 439–444.
- J. M. Wilgeroth, P. J. Hazell, and G. J. Appleby-Thomas, Int. J. Impact Eng. 50, 83 (2012b).
- M. Neville and R. Mathias, J. Physio. 288, 45 (1979).
- F. Pervin, W. W. Chen, and T. Weerasooriya, J. Mech. Behav. Biomed. Mater. 4, 76 (2011).
- Z. Gao, K. Lister, and J. P. Desai, Ann. Biomed. Eng. 38, 505 (2010).
- B. Soroushian, W. M. Whelan, and M. C. Kolios, J. Biomed. Optics 15, 065002 (2010).
- T. Azar and V. Hayward, Estimation of the fracture toughness of soft tissue from needle insertion, in Lecture Notes in Computer Science, Vol. 5104, edited by F. Bello and E. Edwards (Springer-Verlag, 2008) pp. 166–175.
- K. Mitsuhashi, S. Ghosh, and H. Koibuchi, Polymers 10, 715 (2008).
- J. M. Boteler and G. T. Sutherland, J. Appl. Phys. 96, 6919 (2004).
- J. Lamsfuss and S. Bargmann, J. Mech. Behav. Biomed. Mater. 134, 105386 (2022).
- J. D. Clayton, Nonlinear Mechanics of Crystals (Springer, Dordrecht, 2011).
- J. C. Chato, J. Biomed. Eng. 102, 110 (1980).