Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Clique-Based Separator for Intersection Graphs of Geodesic Disks in $\mathbb{R}^2$ (2403.04905v1)

Published 7 Mar 2024 in cs.CG

Abstract: Let $d$ be a (well-behaved) shortest-path metric defined on a path-connected subset of $\mathbb{R}2$ and let $\mathcal{D}={D_1,\ldots,D_n}$ be a set of geodesic disks with respect to the metric $d$. We prove that $\mathcal{G}{\times}(\mathcal{D})$, the intersection graph of the disks in $\mathcal{D}$, has a clique-based separator consisting of $O(n{3/4+\varepsilon})$ cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for $q$-COLORING that runs in time $2{O(n{3/4+\varepsilon})}$, assuming the boundaries of the disks $D_i$ can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses $O(n{7/4+\varepsilon})$ storage and can report the hop distance between any two nodes in $\mathcal{G}{\times}(\mathcal{D})$ in $O(n{3/4+\varepsilon})$ time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. On approximate distance labels and routing schemes with affine stretch. In Proc. 25t⁢hsuperscript25𝑡ℎ25^{th}25 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT International Symposium on Distributed Computing (DISC 2011), volume 6950 of Lecture Notes in Computer Science (ARCoSS), pages 404–415, 2011. \hrefhttps://doi.org/10.1007/978-3-642-24100-0_39 \pathdoi:10.1007/978-3-642-24100-0_39.
  2. Crossing-free subgraphs. In Peter L. Hammer, Alexander Rosa, Gert Sabidussi, and Jean Turgeon, editors, Theory and Practice of Combinatorics, volume 60 of North-Holland Mathematics Studies, pages 9–12. North-Holland, 1982. \hrefhttps://doi.org/doi.org/10.1016/S0304-0208(08)73484-4 \pathdoi:doi.org/10.1016/S0304-0208(08)73484-4.
  3. Planar spanners and approximate shortest path queries among obstacles in the plane. In Proc. 4th Annual European Symposium on Algorithms (ESA 1996), volume 1136 of Lecture Notes in Computer Science, pages 514–528, 1996. \hrefhttps://doi.org/10.1007/3-540-61680-2_79 \pathdoi:10.1007/3-540-61680-2_79.
  4. A clique-based separator for intersection graphs of geodesic disks in \Reals2superscript\Reals2\Reals^{2}start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. In Proc. 40th International Symposium on Computational Geometry (SoCG 2024), LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.
  5. Optimality program in segment and string graphs. Algorithmica, 81(7):3047–3073, 2019. \hrefhttps://doi.org/10.1007/s00453-019-00568-7 \pathdoi:10.1007/s00453-019-00568-7.
  6. Approximate Shortest Paths and Distance Oracles in Weighted Unit-Disk Graphs. In Proc. 34th International Symposium on Computational Geometry (SoCG 2018), volume 99, pages 24:1–24:13, 2018. \hrefhttps://doi.org/10.4230/LIPIcs.SoCG.2018.24 \pathdoi:10.4230/LIPIcs.SoCG.2018.24.
  7. Almost optimal exact distance oracles for planar graphs. J. ACM, 70(2):12:1–12:50, 2023. \hrefhttps://doi.org/10.1145/3580474 \pathdoi:10.1145/3580474.
  8. Shiri Chechik. Approximate distance oracles with constant query time. In Proc. 46th Symposium on Theory of Computing (STOC 2014), pages 654–663, 2014. \hrefhttps://doi.org/10.1145/2591796.2591801 \pathdoi:10.1145/2591796.2591801.
  9. Mark de Berg. A note on reachability and distance oracles for transmission graphs. Computing in Geometry and Topology, 2(1):4:1–4:15, 2023. \hrefhttps://doi.org/doi.org/10.57717/cgt.v2i1.25 \pathdoi:doi.org/10.57717/cgt.v2i1.25.
  10. A framework for Exponential-Time-Hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM J. Comput., 49:1291–1331, 2020. \hrefhttps://doi.org/10.1137/20M1320870 \pathdoi:10.1137/20M1320870.
  11. Clique-based separators for geometric intersection graphs. Algorithmica, 85(6):1652–1678, 2023. \hrefhttps://doi.org/10.1007/S00453-022-01041-8 \pathdoi:10.1007/S00453-022-01041-8.
  12. Reduced constants for simple cycle graph separation. Acta Informatica, 34(3):231–243, 1997. \hrefhttps://doi.org/10.1007/s002360050082 \pathdoi:10.1007/s002360050082.
  13. Separator theorems and Turán-type results for planar intersection graphs. Advances in Mathematics, 219(3):1070–1080, 2008. \hrefhttps://doi.org/doi.org/10.1016/j.aim.2008.06.002 \pathdoi:doi.org/10.1016/j.aim.2008.06.002.
  14. Bin Fu. Theory and application of width bounded geometric separators. Journal of Computer and System Sciences, 77(2):379–392, 2011. \hrefhttps://doi.org/10.1016/j.jcss.2010.05.003 \pathdoi:10.1016/j.jcss.2010.05.003.
  15. Jie Gao and Li Zhang. Well-separated pair decomposition for the unit-disk graph metric and its applications. SIAM Journal on Computing, 35(1):151–169, 2005. \hrefhttps://doi.org/10.1137/S0097539703436357 \pathdoi:10.1137/S0097539703436357.
  16. Approximation algorithms for polynomial-expansion and low-density graphs. SIAM J. Comput., 46(6):1712–1744, 2017. \hrefhttps://doi.org/10.1137/16M1079336 \pathdoi:10.1137/16M1079336.
  17. Optimal approximate distance oracle for planar graphs. In Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS 2021), pages 363–374. IEEE, 2021. \hrefhttps://doi.org/10.1109/FOCS52979.2021.00044 \pathdoi:10.1109/FOCS52979.2021.00044.
  18. James R. Lee. Separators in region intersection graphs. In Proc. 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of LIPIcs, pages 1:1–1:8, 2017. \hrefhttps://doi.org/10.4230/LIPIcs.ITCS.2017.1 \pathdoi:10.4230/LIPIcs.ITCS.2017.1.
  19. Thomas Leighton. Complexity Issues in VLSI. Foundations of Computing Series. MIT Press, 2003.
  20. A separator theorem for planar graphs. SIAM J. Appl. Math, 36(2):177–189, 1977. \hrefhttps://doi.org/doi/10.1137/0136016 \pathdoi:doi/10.1137/0136016.
  21. Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region problem: Finding shortest paths through a weighted planar subdivision. J. ACM, 38(1):18–73, jan 1991. \hrefhttps://doi.org/10.1145/102782.102784 \pathdoi:10.1145/102782.102784.
  22. Distance oracles beyond the Thorup-Zwick bound. In Proc. 51st Annual Symposium on Foundations of Computer Science (FOCS 2010), pages 815–823, 2010. \hrefhttps://doi.org/10.1109/FOCS.2010.83 \pathdoi:10.1109/FOCS.2010.83.
  23. Christian Sommer. Shortest-path queries in static networks. ACM Comput. Surv., 46(4):45:1–45:31, 2014. \hrefhttps://doi.org/10.1145/2530531 \pathdoi:10.1145/2530531.
  24. Approximate distance oracles. J. ACM, 52(1):1–24, 2005. \hrefhttps://doi.org/10.1145/1044731.1044732 \pathdoi:10.1145/1044731.1044732.
  25. William Thurston. The Geometry and Topology of 3-Manifolds. Princeton Lecture Notes, 1978–1981.

Summary

We haven't generated a summary for this paper yet.