Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cell reprogramming design by transfer learning of functional transcriptional networks (2403.04837v1)

Published 7 Mar 2024 in q-bio.MN, cond-mat.dis-nn, cs.LG, and q-bio.GN

Abstract: Recent developments in synthetic biology, next-generation sequencing, and machine learning provide an unprecedented opportunity to rationally design new disease treatments based on measured responses to gene perturbations and drugs to reprogram cells. The main challenges to seizing this opportunity are the incomplete knowledge of the cellular network and the combinatorial explosion of possible interventions, both of which are insurmountable by experiments. To address these challenges, we develop a transfer learning approach to control cell behavior that is pre-trained on transcriptomic data associated with human cell fates, thereby generating a model of the network dynamics that can be transferred to specific reprogramming goals. The approach combines transcriptional responses to gene perturbations to minimize the difference between a given pair of initial and target transcriptional states. We demonstrate our approach's versatility by applying it to a microarray dataset comprising >9,000 microarrays across 54 cell types and 227 unique perturbations, and an RNASeq dataset consisting of >10,000 sequencing runs across 36 cell types and 138 perturbations. Our approach reproduces known reprogramming protocols with an AUROC of 0.91 while innovating over existing methods by pre-training an adaptable model that can be tailored to specific reprogramming transitions. We show that the number of gene perturbations required to steer from one fate to another increases with decreasing developmental relatedness and that fewer genes are needed to progress along developmental paths than to regress. These findings establish a proof-of-concept for our approach to computationally design control strategies and provide insights into how gene regulatory networks govern phenotype.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. Morton SW, et al. (2014) A nanoparticle-based combination chemotherapy delivery system for enhanced tumor killing by dynamic rewiring of signaling pathways. Sci. Signal. 7(325):ra44.
  2. Cancer Chemother. Pharmacol. 80(5):881–894.
  3. MacDiarmid JA, et al. (2009) Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat. Biotechnol. 27(7):643–51.
  4. Cong L, et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823.
  5. Qi LS, et al. (2013) Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 152(5):1173–1183.
  6. Liu Y, et al. (2018) CRISPR activation screens systematically identify factors that drive neuronal fate and reprogramming. Cell Stem Cell 23(5):758–771.
  7. Ludwig H, et al. (2014) European perspective on multiple myeloma treatment strategies in 2014. Oncologist 19(8):829–844.
  8. McDermott DH, et al. (2015) Chromothriptic cure of WHIM syndrome. Cell 160(4):686–699.
  9. Science 359(6382):1361–1365.
  10. Nat. Commun. 4(1):1942.
  11. Phys. Rev. X 5(3):031036.
  12. Szigeti B, et al. (2018) A blueprint for human whole-cell modeling. Curr. Opin. Syst. Biol. 7:8–15.
  13. Yu H, Liu Y (2013) A survey of underactuated mechanical systems. IET Control Theory Appl. 7(7):921–935.
  14. Müller FJ, Schuppert A (2011) Few inputs can reprogram biological networks. Nature 478(7369):E4.
  15. Phys. Rev. E 94(6):062316.
  16. Proc. Natl. Acad. Sci. 114(28):7234–7239.
  17. Chaos An Interdiscip. J. Nonlinear Sci. 32(6).
  18. Nat. Commun. 12(1):1429.
  19. SIAM J. Appl. Dyn. Syst. 17(1):909–930.
  20. J. Phys. Complex. 2(3):035025.
  21. Nat. Mach. Intell. 3(4):316–323.
  22. J. Comput. Phys. 478:111953.
  23. Sci. Rep. 5(1):18693.
  24. npj Syst. Biol. Appl. 8(1):21.
  25. Steinway SN, et al. (2014) Network modetling of TGFβ𝛽\betaitalic_β signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint Sonic Hedgehog and Wnt pathway activation. Cancer Res. 74(21):5963–5977.
  26. Tejeda Zañudo JG, Albert R (2015) Cell fate reprogramming by control of intracellular network dynamics. PLOS Comput. Biol. 11(4):e1004193.
  27. Takahashi K, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872.
  28. D’Alessio AC, et al. (2015) A systematic approach to identify candidate transcription factors that control cell identity. Stem Cell Rep. 5(5):763–775.
  29. Rackham OJL, et al. (2016) A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48(3):331–335.
  30. Theodoris CV, et al. (2023) Transfer learning enables predictions in network biology. Nature.
  31. Proc. Natl. Acad. Sci. USA 97(18):10101–10106.
  32. Wytock TP, Motter AE (2019) Predicting growth rate from gene expression. Proc. Natl. Acad. Sci. USA 116(2):367–372.
  33. Phys. Rev. Lett. 94(12):128701.
  34. Waddington CH (1956) Principles of embryology. (Allen & Unwin, London).
  35. Kauffman SA (1969) Homeostasis and Differentiation in Random Genetic Control Networks. Nature 224(5215):177–178.
  36. Wytock TP, Motter AE (2020) Distinguishing cell phenotype using cell epigenotype. Sci. Adv. 6(12):eaax7798.
  37. Proc. Natl. Acad. Sci. 120(1).
  38. Subramanian A, et al. (2005) Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43):15545–15550.
  39. Glass K, Girvan M (2014) Annotation enrichment analysis: an alternative method for evaluating the functional properties of gene sets. Sci. Rep. 4:4191.1–4191.9.
  40. Sopko R, et al. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol. Cell 21(3):319–330.
  41. Ray MK, et al. (2016) CAT7 and cat7l long non-coding RNAs tune polycomb repressive complex 1 function during human and zebrafish development. J. Biol. Chem. 291(37):19558–19572.
  42. Nature 571(7766):510–514.
  43. Modelska A, et al. (2015) The malignant phenotype in breast cancer is driven by eIF4A1-mediated changes in the translational landscape. Cell Death Dis. 6(1):e1603.
  44. Sullivan E, et al. (2023) Boolean modeling of mechanosensitive epithelial to mesenchymal transition and its reversal. iScience 26(4):106321.
  45. iScience 26(1):105719.
  46. Sci. Rep. 8(1):12077.
  47. Nat. Rev. Genet. 16(3):133–145.
  48. Nat. Methods 16(8):715–721.
  49. Lotfollahi M, et al. (2023) Predicting cellular responses to complex perturbations in high‐throughput screens. Mol. Syst. Biol. 19(6):e11517.
  50. Sastry AV, et al. (2019) The Escherichia coli transcriptome mostly consists of independently regulated modules. Nat. Commun. 10(1):5536.
  51. Babu M, et al. (2014) Quantitative Genome-Wide Genetic Interaction Screens Reveal Global Epistatic Relationships of Protein Complexes in Escherichia coli. PLoS Genet. 10(2):e1004120.
  52. Costanzo M, et al. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science (80-. ). 353(6306):aaf1420.
  53. Nat. Genet. 37(1):77–83.
  54. Hou P, et al. (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654.
  55. Bates LE, Silva JC (2017) Reprogramming human cells to naïve pluripotency: how close are we? Curr. Opin. Genet. Dev. 46:58–65.
  56. Nat. Rev. Mol. Cell Biol. 12(2):79–89.
  57. Nucleic Acids Res. 39(suppl_1):D19–D21.
  58. Barrett T, et al. (2013) NCBI GEO: Archive for functional genomics data sets—update. Nucleic Acids Res. 41(D1):D991–D995.
  59. Nat. Methods 19(7):812–822.
  60. Chen J, et al. (2022) Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat. Commun. 13(1):6494.
  61. Barretina J, et al. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607.
  62. Biostatistics 8(1):118–27.
  63. Dai M, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res. 33(20):e175.
  64. Kang HM, et al. (2018) Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36(1):89–94.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Thomas P. Wytock (6 papers)
  2. Adilson E. Motter (91 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com