Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

That's My Point: Compact Object-centric LiDAR Pose Estimation for Large-scale Outdoor Localisation (2403.04755v1)

Published 7 Mar 2024 in cs.CV and cs.RO

Abstract: This paper is about 3D pose estimation on LiDAR scans with extremely minimal storage requirements to enable scalable mapping and localisation. We achieve this by clustering all points of segmented scans into semantic objects and representing them only with their respective centroid and semantic class. In this way, each LiDAR scan is reduced to a compact collection of four-number vectors. This abstracts away important structural information from the scenes, which is crucial for traditional registration approaches. To mitigate this, we introduce an object-matching network based on self- and cross-correlation that captures geometric and semantic relationships between entities. The respective matches allow us to recover the relative transformation between scans through weighted Singular Value Decomposition (SVD) and RANdom SAmple Consensus (RANSAC). We demonstrate that such representation is sufficient for metric localisation by registering point clouds taken under different viewpoints on the KITTI dataset, and at different periods of time localising between KITTI and KITTI-360. We achieve accurate metric estimates comparable with state-of-the-art methods with almost half the representation size, specifically 1.33 kB on average.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. L. Huang, S. Wang, K. Wong, J. Liu, and R. Urtasun, “Octsqueeze: Octree-structured entropy model for lidar compression,” in IEEE/CVF conference on computer vision and pattern recognition, 2020.
  2. T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient decentralized visual slam,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.
  3. B. Ramtoula, R. de Azambuja, and G. Beltrame, “Capricorn: Communication aware place recognition using interpretable constellations of objects in robot networks,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020.
  4. C. Cao, M. Preda, and T. Zaharia, “3d point cloud compression: A survey,” in International Conference on 3D Web Technology, 2019.
  5. G. Pramatarov, D. De Martini, M. Gadd, and P. Newman, “Boxgraph: Semantic place recognition and pose estimation from 3d lidar,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 7004–7011.
  6. E. Panagiotaki, D. De Martini, G. Pramatarov, M. Gadd, and L. Kunze, “Sem-gat: Explainable semantic pose estimation using learned graph attention,” in International Conference on Advanced Robotics (ICAR), 2023, pp. 367–374.
  7. Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph cnn for learning on point clouds,” ACM Trans. Graph., vol. 38, no. 5, oct 2019. [Online]. Available: https://doi.org/10.1145/3326362
  8. Z. Qin, H. Yu, C. Wang, Y. Guo, Y. Peng, S. Ilic, D. Hu, and K. Xu, “Geotransformer: Fast and robust point cloud registration with geometric transformer,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  9. J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “Semantickitti: A dataset for semantic scene understanding of lidar sequences,” in International Conference on Computer Vision, 2019.
  10. A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition, 2012.
  11. Y. Liao, J. Xie, and A. Geiger, “Kitti-360: A novel dataset and benchmarks for urban scene understanding in 2d and 3d,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  12. P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in Sensor fusion IV: control paradigms and data structures, vol. 1611.   Spie, 1992, pp. 586–606.
  13. Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object recognition,” in 2009 IEEE 12th international conference on computer vision workshops, ICCV Workshops, 2009, pp. 689–696.
  14. A. Mian, M. Bennamoun, and R. Owens, “On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes,” International Journal of Computer Vision, 2010.
  15. R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d registration,” in International Conference on Robotics and Automation, 2009.
  16. F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms for local surface description,” in European Conference on Computer Vision, 2010.
  17. Y. Wang and J. M. Solomon, “Deep closest point: Learning representations for point cloud registration,” in IEEE/CVF international conference on computer vision, 2019, pp. 3523–3532.
  18. L. Wiesmann, T. Guadagnino, I. Vizzo, G. Grisetti, J. Behley, and C. Stachniss, “Dcpcr: Deep compressed point cloud registration in large-scale outdoor environments,” IEEE Robotics and Automation Letters, 2022.
  19. K. Fischer, M. Simon, F. Olsner, S. Milz, H.-M. Gross, and P. Mader, “Stickypillars: Robust and efficient feature matching on point clouds using graph neural networks,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
  20. P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learning feature matching with graph neural networks,” in IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 4938–4947.
  21. C. Shi, X. Chen, K. Huang, J. Xiao, H. Lu, and C. Stachniss, “Keypoint matching for point cloud registration using multiplex dynamic graph attention networks,” IEEE Robotics and Automation Letters, 2021.
  22. X. Chen, T. Läbe, A. Milioto, T. Röhling, J. Behley, and C. Stachniss, “Overlapnet: A siamese network for computing lidar scan similarity with applications to loop closing and localization,” Autonomous Robots.
  23. C. Choy, J. Park, and V. Koltun, “Fully convolutional geometric features,” in International Conference on Computer Vision, 2019.
  24. Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “Pointnetlk: Robust & efficient point cloud registration using pointnet,” in IEEE/CVF conference on computer vision and pattern recognition, 2019.
  25. G. D. Pais, S. Ramalingam, V. M. Govindu, J. C. Nascimento, R. Chellappa, and P. Miraldo, “3dregnet: A deep neural network for 3d point registration,” in IEEE/CVF conference on computer vision and pattern recognition, 2020.
  26. W. Yuan, B. Eckart, K. Kim, V. Jampani, D. Fox, and J. Kautz, “Deepgmr: Learning latent gaussian mixture models for registration,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, 2020.
  27. H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas, “Kpconv: Flexible and deformable convolution for point clouds,” in IEEE/CVF international conference on computer vision, 2019.
  28. E. Panagiotaki, D. De Martini, and L. Kunze, “Semantic interpretation and validation of graph attention-based explanations for gnn models,” in International Conference on Advanced Robotics (ICAR), 2023.
  29. S. Huang, Z. Gojcic, M. Usvyatsov, A. Wieser, and K. Schindler, “Predator: Registration of 3d point clouds with low overlap,” in IEEE/CVF Conference on computer vision and pattern recognition, 2021, pp. 4267–4276.
  30. Y. Zhu, Y. Ma, L. Chen, C. Liu, M. Ye, and L. Li, “Gosmatch: Graph-of-semantics matching for detecting loop closures in 3d lidar data,” in International Conference on Intelligent Robots and Systems, 2020.
  31. Q. Li, C. Wang, C. Wen, and X. Li, “Deepsir: Deep semantic iterative registration for lidar point clouds,” Pattern Recognition, 2023.
  32. C. Liu, J. Guo, D.-M. Yan, Z. Liang, X. Zhang, and Z. Cheng, “Sarnet: Semantic augmented registration of large-scale urban point clouds,” arXiv preprint arXiv:2206.13117, 2022.
  33. R. Dubé, D. Dugas, E. Stumm, J. Nieto, R. Siegwart, and C. Cadena, “Segmatch: Segment based place recognition in 3d point clouds,” in International Conference on Robotics and Automation, 2017.
  34. R. Dubé, A. Cramariuc, D. D. H. Sommer, M. Dymczyk, J. N. R. Siegwart, and C. Cadena, “SegMap: Segment-based mapping and localization usingdata-driven descriptors,” The International Journal of Robotics Research.
  35. A. Cramariuc, F. Tschopp, N. Alatur, S. Benz, T. Falck, M. Brühlmeier, B. Hahn, J. Nieto, and R. Siegwart, “Semsegmap–3d segment-based semantic localization,” in International Conference on Intelligent Robots and Systems, 2021, pp. 1183–1190.
  36. L. Zhang, T. Digumarti, G. Tinchev, and M. Fallon, “Instaloc: One-shot global lidar localisation in indoor environments through instance learning,” Robotics: Science and Systems (RSS), 2023.
  37. X. Kong, X. Yang, G. Zhai, X. Zhao, X. Zeng, M. Wang, Y. Liu, W. Li, and F. Wen, “Semantic graph based place recognition for 3d point clouds,” in International Conference on Intelligent Robots and Systems, 2020.
  38. J. Arce, N. Vödisch, D. Cattaneo, W. Burgard, and A. Valada, “Padloc: Lidar-based deep loop closure detection and registration using panoptic attention,” IEEE Robotics and Automation Letters, 2023.
  39. W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta Crystallographica Section A, 1976.
  40. Y. Sun, C. Cheng, Y. Zhang, C. Zhang, L. Zheng, Z. Wang, and Y. Wei, “Circle loss: A unified perspective of pair similarity optimization,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.
  41. H. Zhou, X. Zhu, X. Song, Y. Ma, Z. Wang, H. Li, and D. Lin, “Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation,” arXiv preprint arXiv:2008.01550, 2020.
  42. L. Li, X. Kong, X. Zhao, T. Huang, W. Li, F. Wen, H. Zhang, and Y. Liu, “Ssc: Semantic scan context for large-scale place recognition,” in International Conference on Intelligent Robots and Systems, 2021.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com