Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noise-mitigated randomized measurements and self-calibrating shadow estimation (2403.04751v1)

Published 7 Mar 2024 in quant-ph, cond-mat.other, math-ph, and math.MP

Abstract: Randomized measurements are increasingly appreciated as powerful tools to estimate properties of quantum systems, e.g., in the characterization of hybrid classical-quantum computation. On many platforms they constitute natively accessible measurements, serving as the building block of prominent schemes like shadow estimation. In the real world, however, the implementation of the random gates at the core of these schemes is susceptible to various sources of noise and imperfections, strongly limiting the applicability of protocols. To attenuate the impact of this shortcoming, in this work we introduce an error-mitigated method of randomized measurements, giving rise to a robust shadow estimation procedure. On the practical side, we show that error mitigation and shadow estimation can be carried out using the same session of quantum experiments, hence ensuring that we can address and mitigate the noise affecting the randomization measurements. Mathematically, we develop a picture derived from Fourier-transforms to connect randomized benchmarking and shadow estimation. We prove rigorous performance guarantees and show the functioning using comprehensive numerics. More conceptually, we demonstrate that, if properly used, easily accessible data from randomized benchmarking schemes already provide such valuable diagnostic information to inform about the noise dynamics and to assist in quantum learning procedures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. Kliesch and I. Roth, Theory of quantum system certification, PRX Quantum 2, 010201 (2021).
  2. A. J. Scott, Tight informationally complete quantum measurements, J. Phys. A 39, 13507 (2006).
  3. J. Emerson, R. Alicki, and K. Zyczkowski, Scalable noise estimation with random unitary operators, J. Opt. B 7, S347 (2005).
  4. E. Magesan, J. M. Gambetta, and J. Emerson, Robust randomized benchmarking of quantum processes, Phys. Rev. Lett. 106, 180504 (2011a).
  5. M. Ohliger, V. Nesme, and J. Eisert, Efficient and feasible state tomography of quantum many-body systems, New J. Phys. 15, 015024 (2013).
  6. H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Phys. 16, 1050 (2020).
  7. M. Paini and A. Kalev, An approximate description of quantum states (2019), arXiv:1910.10543 .
  8. D. E. Koh and S. Grewal, Classical shadows with noise, Quantum 6, 776 (2022).
  9. R. Brieger, I. Roth, and M. Kliesch, Compressive gate set tomography, arXiv:2112.05176 (2021).
  10. E. van den Berg, Z. K. Minev, and K. Temme, Model-free readout-error mitigation for quantum expectation values, Phys. Rev. A 105, 032620 (2022).
  11. A. Zhao and A. Miyake, Group-theoretic error mitigation enabled by classical shadows and symmetries (2023), arXiv:2310.03071 .
  12. W. T. Gowers and O. Hatami, Inverse and stability theorems for approximate representations of finite groups, Sbornik Math. 208, 1784 (2017).
  13. S. T. Merkel, E. J. Pritchett, and B. H. Fong, Randomized benchmarking as convolution: Fourier analysis of gate dependent errors, Quantum 5, 581 (2021).
  14. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  15. Y. Li and S. C. Benjamin, Efficient variational quantum simulator incorporating active error minimization, Phys. Rev. X 7, 021050 (2017).
  16. E. Onorati, A. H. Werner, and J. Eisert, Randomized benchmarking for individual quantum gates, Phys. Rev. Lett. 123, 060501 (2019).
  17. M. Heinrich, M. Kliesch, and I. Roth, Randomized benchmarking with random quantum circuits (2022), arxiv:2212.06181 .
  18. A. Carignan-Dugas, J. J. Wallman, and J. Emerson, Characterizing universal gate sets via dihedral benchmarking, Phys. Rev. A 92, 060302 (2015).
  19. F. B. Maciejewski, Z. Zimborás, and M. Oszmaniec, Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography, Quantum 4, 257 (2020).
  20. E. Magesan, J. M. Gambetta, and J. Emerson, Scalable and robust randomized benchmarking of quantum processes, Phys. Rev. Lett. 106, 180504 (2011b).
  21. J. J. Wallman, Randomized benchmarking with gate-dependent noise, Quantum 2, 47 (2018).
  22. G. Lugosi and S. Mendelson, Mean estimation and regression under heavy-tailed distributions: A survey, Found. Comp. Math. 19, 1145 (2019).
  23. C. A. Dugas, J. Wallman, and J. Emerson, Characterizing universal gate sets via dihedral benchmarking, Phys. Rev. A 92, 060302 (2015).
  24. E. Magesan, J. M. Gambetta, and J. Emerson, Characterizing quantum gates via randomized benchmarking, Phys. Rev. A 85, 042311 (2012).
  25. F. Arute et al., Quantum supremacy using a programmable superconducting processor, Nature 574, 505 (2019).
  26. Y. Wu et al., Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett. 127, 180501 (2021).
  27. D. Hangleiter and J. Eisert, Computational advantage of quantum random sampling, Rev. Mod. Phys. 95, 035001 (2023).
  28. A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandao, Random quantum circuits transform local noise into global white noise (2021), arXiv:2111.14907 .
  29. B. Collins, S. Matsumoto, and J. Novak, The Weingarten calculus, Notices Am. Math. Soc. 69, 734 (2022).
  30. D. Gross, F. Krahmer, and R. Kueng, A partial derandomization of phaselift using spherical designs, J. Four. An. App. 21, 229 (2015).
  31. G. W. Stewart and J.-G. Sun, Matrix perturbation theory (Academic Press, 1990).
  32. T. Kato, Perturbation theory for linear operators, Vol. 132 (Springer-Verlag Berlin Heidelberg, 1995).
  33. Qiskit contributors, Qiskit: An open-source framework for quantum computing (2023).
  34. Cirq Developers, Cirq (2023).
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets