Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing the query complexity limits of quantum phase estimation using symmetry aware spectral bounds (2403.04737v2)

Published 7 Mar 2024 in quant-ph, cond-mat.other, and physics.comp-ph

Abstract: The computational cost of quantum algorithms for physics and chemistry is closely linked to the spectrum of the Hamiltonian, a property that manifests in the necessary rescaling of its eigenvalues. The typical approach of using the 1-norm as an upper bound to the spectral norm to rescale the Hamiltonian suits the most general case of bounded Hermitian operators but neglects the influence of symmetries commonly found in chemical systems. In this work, we introduce a hierarchy of symmetry-aware spectral bounds that provide a unified understanding of the performance of quantum phase estimation algorithms using block-encoded electronic structure Hamiltonians. We present a variational and numerically tractable method for computing these bounds, based on orbital optimization, to demonstrate that the computed bounds are smaller than conventional spectral bounds for a variety of molecular benchmark systems. We also highlight the unique analytical and numerical scaling behavior of these bounds in the thermodynamic and complete basis set limits. Our work shows that there is room for improvement in reducing the 1-norm, not yet achieved through methods like double factorization and tensor hypercontraction, but highlights potential challenges in improving the performance of current quantum algorithms beyond small constant factors through 1-norm reduction techniques alone.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. G. H. Low and I. L. Chuang, Physical review letters 118, 010501 (2017).
  2. G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
  3. H. H. S. Chan, D. Muñoz-Ramo, and N. Fitzpatrick, arXiv preprint arXiv:2303.06161  (2023).
  4. P. Rall, Physical Review A 102, 022408 (2020).
  5. D. An, A. M. Childs, and L. Lin, arXiv preprint arXiv:2312.03916  (2023).
  6. H. Krovi, Quantum 7, 913 (2023).
  7. A. Dutkiewicz, B. M. Terhal, and T. E. O’Brien, Quantum 6, 830 (2022).
  8. L. Lin and Y. Tong, PRX Quantum 3, 010318 (2022).
  9. Y. Dong, L. Lin, and Y. Tong, PRX Quantum 3, 040305 (2022).
  10. H. Li, H. Ni, and L. Ying, Physical Review A 108, 062408 (2023).
  11. Z. Ding and L. Lin, PRX Quantum 4, 020331 (2023).
  12. G. Rendon, T. Izubuchi, and Y. Kikuchi, Physical Review D 106, 034503 (2022).
  13. J. Cohn, M. Motta, and R. M. Parrish, PRX Quantum 2, 040352 (2021).
  14. B. I. Dunlap, J. Connolly, and J. Sabin, The Journal of Chemical Physics 71, 3396 (1979).
  15. H.-J. Werner, F. R. Manby, and P. J. Knowles, The Journal of chemical physics 118, 8149 (2003).
  16. T. B. Pedersen, F. Aquilante, and R. Lindh, Theoretical Chemistry Accounts 124, 1 (2009).
  17. E. G. Hohenstein and C. D. Sherrill, The Journal of chemical physics 133 (2010).
  18. J. Lee, L. Lin, and M. Head-Gordon, Journal of chemical theory and computation 16, 243 (2019).
  19. N. C. Rubin, J. Lee, and R. Babbush, Journal of Chemical Theory and Computation 18, 1480 (2022).
  20. I. Loaiza and A. F. Izmaylov, Journal of Chemical Theory and Computation  (2023).
  21. W. Fulton and J. Harris, Representation theory: a first course, Vol. 129 (Springer Science & Business Media, 2013).
  22. S. McArdle, E. Campbell, and Y. Su, Physical Review A 105, 012403 (2022).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com