Matrix decompositions in Quantum Optics: Takagi/Autonne, Bloch-Messiah/Euler, Iwasawa, and Williamson (2403.04596v2)
Abstract: In this note we summarize four important matrix decompositions commonly used in quantum optics, namely the Takagi/Autonne, Bloch-Messiah/Euler, Iwasawa, and Williamson decompositions. The first two of these decompositions are specialized versions of the singular-value decomposition when applied to symmetric or symplectic matrices. The third factors any symplectic matrix in a unique way in terms of matrices that belong to different subgroups of the symplectic group. The last one instead gives the symplectic diagonalization of real, positive definite matrices of even size. While proofs of the existence of these decompositions exist in the literature, we focus on providing explicit constructions to implement these decompositions using standard linear algebra packages and functionalities such as singular-value, polar, Schur and QR decompositions, and matrix square roots and inverses.
- N. Quesada, “SymplecticDecompositions.jl a Julia package for symplectic matrix decompositions,” https://github.com/polyquantique/SymplecticDecompositions.jl (2024).
- A. Serafini, Quantum continuous variables: a primer of theoretical methods (CRC press, 2017).
- F. Nicacio, American Journal of Physics 89, 1139 (2021).
- R. A. Horn and C. R. Johnson, Matrix analysis (Cambridge university press, 2012).
- C. Fabre and N. Treps, Reviews of Modern Physics 92, 035005 (2020).
- S. L. Braunstein, Physical Review A 71, 055801 (2005).
- C. Bloch and A. Messiah, Nuclear Physics 39, 95 (1962).
- A. Serafini and G. Adesso, Journal of Physics A: Mathematical and Theoretical 40, 8041 (2007).
- T. Kalajdzievski and N. Quesada, Quantum 5, 394 (2021).
- G. Cariolaro and G. Pierobon, Physical Review A 94, 062109 (2016a).
- G. Cariolaro and G. Pierobon, Physical Review A 93, 062115 (2016b).
- M. Houde and N. Quesada, arXiv preprint arxiv:2401.10197 (2024).
- K. Iwasawa, Annals of Mathematics , 507 (1949).
- M. A. De Gosson, Symplectic geometry and quantum mechanics, Vol. 166 (Springer Science & Business Media, 2006).
- K. Habermann and L. Habermann, Introduction to symplectic Dirac operators (Springer, 2006).
- G. B. Folland, Harmonic analysis in phase space, 122 (Princeton university press, 1989).
- J. Lodewyck and P. Grangier, Physical Review A 76, 022332 (2007).
- J. Williamson, American journal of mathematics 58, 141 (1936).
- V. I. Arnol’d, Mathematical methods of classical mechanics, Vol. 60 (Springer Science & Business Media, 2013).
- N. T. Son and T. Stykel, arXiv preprint arXiv:2208.05291 (2022).
- G. Adesso and F. Illuminati, Journal of Physics A: Mathematical and Theoretical 40, 7821 (2007).
- M. Houde and N. Quesada, AVS Quantum Science 5 (2023).
- C. M. Caves, “Polar decomposition, singular-value decomposition, and autonne-takagi factorization,” http://info.phys.unm.edu/~caves/courses/qinfo-s17/lectures/polarsingularAutonne.pdf (2017), accessed on July 11, 2023.
- G. H. Golub and C. F. Van Loan, Matrix computations (JHU press, 2013).
- C. M. Caves, “Antisymmetric operators on a real vector space,” http://info.phys.unm.edu/~caves/reports/antisymmetric.pdf (2001), accessed on Feb 4, 2024.
- M. Benzi and N. Razouk, Applied mathematics letters 20, 260 (2007).