Weak Hopf symmetry and tube algebra of the generalized multifusion string-net model (2403.04446v2)
Abstract: We investigate the multifusion generalization of string-net ground states and lattice Hamiltonians, delving into its associated weak Hopf symmetry. For the multifusion string-net, the gauge symmetry manifests as a general weak Hopf algebra, leading to a reducible vacuum string label; the charge symmetry, serving as a quantum double of gauge symmetry, constitutes a connected weak Hopf algebra. This implies that the associated topological phase retains its characterization by a unitary modular tensor category (UMTC). The bulk charge symmetry can also be captured by a weak Hopf tube algebra. We offer an explicit construction of the weak Hopf tube algebra structure and thoroughly discuss its properties. The gapped boundary and domain wall models are extensively discussed, with these $1d$ phases characterized by unitary multifusion categories (UMFCs). We delve into the gauge and charge symmetries of these $1d$ phases, as well as the construction of the boundary and domain wall tube algebras. Additionally, we illustrate that the domain wall tube algebra can be regarded as a cross product of two boundary tube algebras. As an application of our model, we elucidate how to interpret the defective string-net as a restricted multifusion string-net.
- S. Sachdev, Quantum phase transitions 2nd edition (Cambridge University Press, 2011).
- X.-G. Wen, Quantum field theory of many-body systems: from the origin of sound to an origin of light and electrons (Oxford University Press on Demand, 2004).
- S. H. Simon, Topological Quantum (Oxford University Press, 2023).
- E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” Journal of Mathematical Physics 43, 4452–4505 (2002), arXiv:quant-ph/0110143 [quant-ph] .
- B. M. Terhal, “Quantum error correction for quantum memories,” Rev. Mod. Phys. 87, 307 (2015), arXiv:1302.3428 [quant-ph] .
- A. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 303, 2 (2003), arXiv:quant-ph/9707021 [quant-ph] .
- M. H. Freedman, M. Larsen, and Z. Wang, “A modular functor which is universal for quantum computation,” Communications in Mathematical Physics 227, 605 (2002), arXiv:quant-ph/0001108 [quant-ph] .
- C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008), arXiv:0707.1889 [cond-mat.str-el] .
- Z. Wang, Topological quantum computation, CBMS No. 112 (American Mathematical Soc., 2010).
- J. K. Pachos, Introduction to topological quantum computation (Cambridge University Press, 2012).
- A. Chatterjee, W. Ji, and X.-G. Wen, “Emergent generalized symmetry and maximal symmetry-topological-order,” (2023), arXiv:2212.14432 [cond-mat.str-el] .
- X.-G. Wen, “Emergent generalized symmetry to gapless liquids theory (I) and (II),” Princeton Summer School on Condensed Matter Physics 2023 (2023).
- E. Witten, “Topological quantum field theory,” Communications in Mathematical Physics 117, 353 (1988).
- R. Dijkgraaf and E. Witten, “Topological gauge theories and group cohomology,” Communications in Mathematical Physics 129, 393 (1990).
- F. Wilczek, Fractional statistics and anyon superconductivity, Vol. 5 (World scientific, 1990).
- X. G. Wen, ‘‘Vacuum degeneracy of chiral spin states in compactified space,” Phys. Rev. B 40, 7387 (1989).
- X.-G. Wen and Q. Niu, “Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces,” Phys. Rev. B 41, 9377 (1990).
- M. A. Levin and X.-G. Wen, “String-net condensation: A physical mechanism for topological phases,” Phys. Rev. B 71, 045110 (2005), arXiv:cond-mat/0404617 [cond-mat.str-el] .
- L. Landau, “Zur theorie der phasenumwandlungen II,” Phys. Z. Sowjetunion 11, 26 (1937).
- L. Kong and X.-G. Wen, “Braided fusion categories, gravitational anomalies, and the mathematical framework for topological orders in any dimensions,” arXiv preprint arXiv:1405.5858 (2014).
- X.-G. Wen, “Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders,” Phys. Rev. D 88, 045013 (2013), arXiv:1303.1803 [hep-th] .
- A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics 321, 2 (2006), january Special Issue.
- C. L. Kane and M. P. A. Fisher, “Quantized thermal transport in the fractional quantum Hall effect,” Phys. Rev. B 55, 15832 (1997), arXiv:cond-mat/9603118 [cond-mat] .
- V. G. Turaev and O. Y. Viro, “State sum invariants of 3-manifolds and quantum 6j𝑗jitalic_j-symbols,” Topology 31, 865 (1992).
- J. Barrett and B. Westbury, “Invariants of piecewise-linear 3-manifolds,” Transactions of the American Mathematical Society 348, 3997 (1996), arXiv:hep-th/9311155 [hep-th] .
- A. Kirillov Jr, “String-net model of Turaev-Viro invariants,” (2011), arXiv:1106.6033 [math.AT] .
- T. Lan and X.-G. Wen, “Topological quasiparticles and the holographic bulk-edge relation in (2+1)21(2+1)( 2 + 1 )-dimensional string-net models,” Phys. Rev. B 90, 115119 (2014), arXiv:1311.1784 [cond-mat.str-el] .
- C.-H. Lin and M. Levin, “Generalizations and limitations of string-net models,” Phys. Rev. B 89, 195130 (2014).
- C.-H. Lin, M. Levin, and F. J. Burnell, “Generalized string-net models: A thorough exposition,” Phys. Rev. B 103, 195155 (2021), arXiv:2012.14424 [cond-mat.str-el] .
- A. Hahn and R. Wolf, “Generalized string-net model for unitary fusion categories without tetrahedral symmetry,” Phys. Rev. B 102, 115154 (2020), arXiv:2004.07045 [quant-ph] .
- O. Buerschaper and M. Aguado, “Mapping Kitaev’s quantum double lattice models to Levin and Wen’s string-net models,” Phys. Rev. B 80, 155136 (2009), arXiv:0907.2670 [cond-mat.str-el] .
- O. Buerschaper, J. M. Mombelli, M. Christandl, and M. Aguado, “A hierarchy of topological tensor network states,” Journal of Mathematical Physics 54, 012201 (2013a), arXiv:1007.5283 [cond-mat.str-el] .
- O. Buerschaper, M. Christandl, L. Kong, and M. Aguado, “Electric–magnetic duality of lattice systems with topological order,” Nuclear Physics B 876, 619 (2013b), arXiv:1006.5823 [cond-mat.str-el] .
- Z. Jia, D. Kaszlikowski, and S. Tan, “Boundary and domain wall theories of 2d generalized quantum double model,” Journal of High Energy Physics 2023, 1 (2023a), arXiv:2207.03970 [quant-ph] .
- G. Böhm, F. Nill, and K. Szlachányi, “Weak Hopf algebras: I. Integral theory and C*superscript𝐶{C}^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-structure,” Journal of Algebra 221, 385 (1999), arXiv:math/9805116 [math.QA] .
- K. Szlachányi, “Finite quantum groupoids and inclusions of finite type,” in Mathematical physics in mathematics and physics: quantum and operator algebraic aspects, Fields Institute Communications, Vol. 30 (American Mathematical Soc., 2001) p. 393–407, arXiv:math/0011036 [math.QA] .
- V. Ostrik, “Module categories, weak Hopf algebras and modular invariants,” Transformation Groups 8, 177 (2003), arXiv:math/0111139 [math.QA] .
- Z. Jia, S. Tan, D. Kaszlikowski, and L. Chang, “On weak Hopf symmetry and weak Hopf quantum double model,” Communications in Mathematical Physics 402, 3045 (2023b), arXiv:2302.08131 [hep-th] .
- L. Chang, “Kitaev models based on unitary quantum groupoids,” Journal of Mathematical Physics 55, 041703 (2014), arXiv:1309.4181 [math.QA] .
- A. Ocneanu, “Chirality for operator algebras,” in Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebra (World Sci. Publ., River Edge, 1994) pp. 39–63.
- A. Ocneanu, “Operator algebras, topology and subgroups of quantum symmetry–construction of subgroups of quantum groups–,” in Taniguchi Conference on Mathematics Nara’98, Vol. 31 (Mathematical Society of Japan, 2001) pp. 235–264.
- M. Izumi, “The structure of sectors associated with Longo–Rehren inclusions I. General theory,” Communications in Mathematical Physics 213, 127 (2000).
- M. Izumi, ‘‘The structure of sectors associated with Longo–Rehren inclusions II. Examples,” Reviews in Mathematical Physics 13, 603 (2001).
- M. Müger, “From subfactors to categories and topology I: Frobenius algebras in and Morita equivalence of tensor categories,” Journal of Pure and Applied Algebra 180, 81 (2003).
- J. Christian, D. Green, P. Huston, and D. Penneys, “A lattice model for condensation in Levin-Wen systems,” Journal of High Energy Physics 2023, 55 (2023), arXiv:2303.04711 [cond-mat.str-el] .
- K. Kawagoe, C. Jones, S. Sanford, D. Green, and D. Penneys, “Levin-Wen is a gauge theory: entanglement from topology,” (2024), arXiv:2401.13838 [cond-mat.str-el] .
- A. Kitaev and L. Kong, “Models for gapped boundaries and domain walls,” Communications in Mathematical Physics 313, 351 (2012), arXiv:1104.5047 [cond-mat.str-el] .
- S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,” (1998), arXiv:quant-ph/9811052 [quant-ph] .
- H. Bombin and M. A. Martin-Delgado, “Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement,” Phys. Rev. B 78, 115421 (2008), arXiv:0712.0190 [cond-mat.str-el] .
- M. H. Freedman and D. A. Meyer, “Projective plane and planar quantum codes,” Foundations of Computational Mathematics 1, 325 (2001), arXiv:quant-ph/9810055 [quant-ph] .
- S. Beigi, P. W. Shor, and D. Whalen, “The quantum double model with boundary: Condensations and symmetries,” Communications in Mathematical Physics 306, 663 (2011), arXiv:1006.5479 [quant-ph] .
- M. Levin, “Protected edge modes without symmetry,” Phys. Rev. X 3, 021009 (2013), arXiv:1301.7355 [cond-mat.str-el] .
- J. C. Wang and X.-G. Wen, “Boundary degeneracy of topological order,” Phys. Rev. B 91, 125124 (2015), arXiv:1212.4863 [cond-mat.str-e] .
- I. Cong, M. Cheng, and Z. Wang, “Hamiltonian and algebraic theories of gapped boundaries in topological phases of matter,” Communications in Mathematical Physics 355, 645 (2017), arXiv:1707.04564 [cond-mat.str-el] .
- H. Wang, Y. Li, Y. Hu, and Y. Wan, “Electric-magnetic duality in the quantum double models of topological orders with gapped boundaries,” Journal of High Energy Physics 2020, 1 (2020), arXiv:1910.13441 [cond-mat.str-el] .
- A. F. Bais, B. J. Schroers, and J. K. Slingerland, “Hopf symmetry breaking and confinement in (2+1)-dimensional gauge theory,” Journal of High Energy Physics 2003, 068 (2003), arXiv:hep-th/0205114 [hep-th] .
- C. Meusburger, “Kitaev lattice models as a Hopf algebra gauge theory,” Communications in Mathematical Physics 353, 413 (2017), arXiv:1607.01144 [math.QA] .
- K. Szlachányi, “Oriented closed surface complexes and the Kitaev model,” (2023), arXiv:2302.08027 [math.QA] .
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, Vol. 18 (De Gruyter, 2016) pp. xii+592.
- V. Turaev and A. Virelizier, Monoidal categories and topological field theory, Progress in Mathematics, Vol. 322 (2017) pp. xii+523.
- S. X. Cui and Z. Wang, “State sum invariants of three manifolds from spherical multi-fusion categories,” Journal of Knot Theory and Its Ramifications 26, 1750104 (2017), arXiv:1702.07113 [math.QA] .
- D. Reutter, “Uniqueness of unitary structure for unitarizable fusion categories,” Communications in Mathematical Physics 397, 37 (2023), arXiv:1906.09710 [math.QA] .
- S. Ciamprone, M. V. Giannone, and C. Pinzari, “Weak quasi-Hopf algebras, C*superscript𝐶{C}^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-tensor categories and conformal field theory, and the Kazhdan-Lusztig-Finkelberg theorem,” (2023), arXiv:2101.10016 [math.QA] .
- L. Kong and H. Zheng, “The center functor is fully faithful,” Advances in Mathematics 339, 749 (2018), arXiv:1507.00503 [math.CT] .
- L. Chang, M. Cheng, S. X. Cui, Y. Hu, W. Jin, R. Movassagh, P. Naaijkens, Z. Wang, and A. Young, “On enriching the Levin–Wen model with symmetry,” Journal of Physics A: Mathematical and Theoretical 48, 12FT01 (2015), arXiv:1412.6589 [cond-mat.str-el] .
- D. Nikshych, V. Turaev, and L. Vainerman, “Invariants of knots and 3-manifolds from quantum groupoids,” Topology and its Applications 127, 91 (2003), arXiv:math/0006078 [math.QA] .
- P. Etingof, D. Nikshych, and V. Ostrik, “On fusion categories,” Annals of mathematics , 581 (2005), arXiv:math/0203060 [math.QA] .
- F. A. Bais, B. J. Schroers, and J. K. Slingerland, “Broken quantum symmetry and confinement phases in planar physics,” Phys. Rev. Lett. 89, 181601 (2002).
- F. A. Bais and J. K. Slingerland, “Condensate-induced transitions between topologically ordered phases,” Phys. Rev. B 79, 045316 (2009).
- L. Kong, “Anyon condensation and tensor categories,” Nuclear Physics B 886, 436 (2014), arXiv:1307.8244 [cond-mat.str-el] .
- S. Eliëns, “Anyon condensation,” MSc Thesis, University of Amsterdam, 2010, available at https://www.cs.vu.nl/ eliens/download/thesis-sebas.pdf (2010).
- F. J. Burnell, “Anyon condensation and its applications,” Annual Review of Condensed Matter Physics 9, 307 (2018), arXiv:1706.04940 [cond-mat.str-el] .
- S.-M. Hong, “On symmetrization of 6j6𝑗6j6 italic_j-symbols and Levin-Wen Hamiltonian,” (2009), arXiv:0907.2204 [math.GT] .
- Y. Hu, S. D. Stirling, and Y.-S. Wu, “Ground-state degeneracy in the Levin-Wen model for topological phases,” Phys. Rev. B 85, 075107 (2012), arXiv:1105.5771 [cond-mat.str-el] .
- Y. Hu, Z.-X. Luo, R. Pankovich, Y. Wan, and Y.-S. Wu, “Boundary Hamiltonian theory for gapped topological phases on an open surface,” Journal of High Energy Physics 2018, 1 (2018), arXiv:1706.03329 [cond-mat.str-el] .
- J. Fuchs and T. Grøsfjeld, “Tetrahedral symmetry of 6j6𝑗6j6 italic_j-symbols in fusion categories,” Journal of Pure and Applied Algebra 227, 107112 (2023), arXiv:2106.16186 [math.QA] .
- J. Vidal, “Partition function of the Levin-Wen model,” Phys. Rev. B 105, L041110 (2022), arXiv:2108.13425 [cond-mat.str-el] .
- A. Ritz-Zwilling, J.-N. Fuchs, S. H. Simon, and J. Vidal, “Topological and nontopological degeneracies in generalized string-net models,” (2023), arXiv:2309.00343 [cond-mat.other] .
- G. Moore and N. Seiberg, “Classical and quantum conformal field theory,” Communications in Mathematical Physics 123, 177 (1989).
- J. C. Bridgeman, L. Lootens, and F. Verstraete, “Invertible bimodule categories and generalized Schur orthogonality,” Communications in Mathematical Physics 402, 2691 (2023), arXiv:2211.01947 [math.QA] .
- Z. Jia, D. Kaszlikowski, and S. Tan, “Electric-magnetic duality and ℤ2subscriptℤ2\mathbb{Z}_{2}blackboard_Z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry enriched cyclic abelian lattice gauge theory,” (2022), arXiv:2201.12361 [quant-ph] .
- Z. Jia, “Anyon condensation: weak Hopf symmetry breaking perspective,” in preparation.
- M. Müger, “Galois extensions of braided tensor categories and braided crossed G𝐺Gitalic_G-categories,” Journal of Algebra 277, 256 (2004), arXiv:math/0209093 [math.CT] .
- A. Davydov, M. Müger, D. Nikshych, and V. Ostrik, “The Witt group of non-degenerate braided fusion categories,” Journal für die reine und angewandte Mathematik 2013, 135 (2013), arXiv:1009.2117 [math.QA] .
- P. Etingof, D. Nikshych, and V. Ostrik, “Fusion categories and homotopy theory,” Quantum topology 1, 209 (2010), arXiv:0909.3140 [math.QA] .
- L. Kong, “Some universal properties of Levin-Wen models,” in XVIIth Interntional Congress on Mathematical Physics (2012) arXiv:1211.4644 [cond-mat.str-el] .