Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FriendNet: Detection-Friendly Dehazing Network (2403.04443v1)

Published 7 Mar 2024 in cs.CV

Abstract: Adverse weather conditions often impair the quality of captured images, inevitably inducing cutting-edge object detection models for advanced driver assistance systems (ADAS) and autonomous driving. In this paper, we raise an intriguing question: can the combination of image restoration and object detection enhance detection performance in adverse weather conditions? To answer it, we propose an effective architecture that bridges image dehazing and object detection together via guidance information and task-driven learning to achieve detection-friendly dehazing, termed FriendNet. FriendNet aims to deliver both high-quality perception and high detection capacity. Different from existing efforts that intuitively treat image dehazing as pre-processing, FriendNet establishes a positive correlation between these two tasks. Clean features generated by the dehazing network potentially contribute to improvements in object detection performance. Conversely, object detection crucially guides the learning process of the image dehazing network under the task-driven learning scheme. We shed light on how downstream tasks can guide upstream dehazing processes, considering both network architecture and learning objectives. We design Guidance Fusion Block (GFB) and Guidance Attention Block (GAB) to facilitate the integration of detection information into the network. Furthermore, the incorporation of the detection task loss aids in refining the optimization process. Additionally, we introduce a new Physics-aware Feature Enhancement Block (PFEB), which integrates physics-based priors to enhance the feature extraction and representation capabilities. Extensive experiments on synthetic and real-world datasets demonstrate the superiority of our method over state-of-the-art methods on both image quality and detection precision. Our source code is available at https://github.com/fanyihua0309/FriendNet.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. Y. Wang, X. Yan, D. Guan, M. Wei, Y. Chen, X.-P. Zhang, and J. Li, “Cycle-snspgan: Towards real-world image dehazing via cycle spectral normalized soft likelihood estimation patch gan,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 20 368–20 382, 2022.
  2. Q. Ding, P. Li, X. Yan, D. Shi, L. Liang, W. Wang, H. Xie, J. Li, and M. Wei, “Cf-yolo: Cross fusion yolo for object detection in adverse weather with a high-quality real snow dataset,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  3. W.-T. Chen, I.-H. Chen, C.-Y. Yeh, H.-H. Yang, J.-J. Ding, and S.-Y. Kuo, “Sjdl-vehicle: Semi-supervised joint defogging learning for foggy vehicle re-identification,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, 2022, pp. 347–355.
  4. N. Lyu, J. Zhao, P. Liu, L. Li, Y. He, T. Su, and J. Wen, “Scene-adaptive real-time fast dehazing and detection in driving environment,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  5. W. Liu, G. Ren, R. Yu, S. Guo, J. Zhu, and L. Zhang, “Image-adaptive yolo for object detection in adverse weather conditions,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 2, 2022, pp. 1792–1800.
  6. Y. Wang, X. Yan, K. Zhang, L. Gong, H. Xie, F. L. Wang, and M. Wei, “Togethernet: Bridging image restoration and object detection together via dynamic enhancement learning,” in Computer Graphics Forum, vol. 41, no. 7.   Wiley Online Library, 2022, pp. 465–476.
  7. K. Zhang, X. Yan, Y. Wang, and J. Qi, “Adaptive dehazing yolo for object detection,” in International Conference on Artificial Neural Networks.   Springer, 2023, pp. 14–27.
  8. X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia, “Ffa-net: Feature fusion attention network for single image dehazing,” in Proceedings of the AAAI conference on artificial intelligence, vol. 34, no. 07, 2020, pp. 11 908–11 915.
  9. H. Wu, Y. Qu, S. Lin, J. Zhou, R. Qiao, Z. Zhang, Y. Xie, and L. Ma, “Contrastive learning for compact single image dehazing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 551–10 560.
  10. Y. Zheng, J. Zhan, S. He, J. Dong, and Y. Du, “Curricular contrastive regularization for physics-aware single image dehazing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5785–5794.
  11. Y. Song, Y. Zhou, H. Qian, and X. Du, “Rethinking performance gains in image dehazing networks,” arXiv preprint arXiv:2209.11448, 2022.
  12. B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking single-image dehazing and beyond,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 492–505, 2018.
  13. Y. Li, Y. Liu, Q. Yan, and K. Zhang, “Deep dehazing network with latent ensembling architecture and adversarial learning,” IEEE Transactions on Image Processing, vol. 30, pp. 1354–1368, 2020.
  14. C. Li, H. Zhou, Y. Liu, C. Yang, Y. Xie, Z. Li, and L. Zhu, “Detection-friendly dehazing: Object detection in real-world hazy scenes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  15. D. Liu, B. Wen, J. Jiao, X. Liu, Z. Wang, and T. S. Huang, “Connecting image denoising and high-level vision tasks via deep learning,” IEEE Transactions on Image Processing, vol. 29, pp. 3695–3706, 2020.
  16. M. Haris, G. Shakhnarovich, and N. Ukita, “Task-driven super resolution: Object detection in low-resolution images,” in Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part V 28.   Springer, 2021, pp. 387–395.
  17. K. Wang, T. Wang, J. Qu, H. Jiang, Q. Li, and L. Chang, “An end-to-end cascaded image deraining and object detection neural network,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9541–9548, 2022.
  18. Y. Lee, J. Jeon, Y. Ko, B. Jeon, and M. Jeon, “Task-driven deep image enhancement network for autonomous driving in bad weather,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 13 746–13 753.
  19. S.-C. Huang, T.-H. Le, and D.-W. Jaw, “Dsnet: Joint semantic learning for object detection in inclement weather conditions,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 8, pp. 2623–2633, 2020.
  20. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE transactions on pattern analysis and machine intelligence, vol. 33, no. 12, pp. 2341–2353, 2010.
  21. Q. Zhu, J. Mai, and L. Shao, “Single image dehazing using color attenuation prior.” in BMVC, 2014.
  22. D. Berman, S. Avidan et al., “Non-local image dehazing,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1674–1682.
  23. B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-end system for single image haze removal,” IEEE transactions on image processing, vol. 25, no. 11, pp. 5187–5198, 2016.
  24. B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “Aod-net: All-in-one dehazing network,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 4770–4778.
  25. X. Liu, Y. Ma, Z. Shi, and J. Chen, “Griddehazenet: Attention-based multi-scale network for image dehazing,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 7314–7323.
  26. Y. Cui, Y. Tao, Z. Bing, W. Ren, X. Gao, X. Cao, K. Huang, and A. Knoll, “Selective frequency network for image restoration,” in The Eleventh International Conference on Learning Representations, 2023.
  27. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18.   Springer, 2015, pp. 234–241.
  28. Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE transactions on neural networks and learning systems, vol. 30, no. 11, pp. 3212–3232, 2019.
  29. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.
  30. R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440–1448.
  31. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” Advances in neural information processing systems, vol. 28, 2015.
  32. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14.   Springer, 2016, pp. 21–37.
  33. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
  34. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  35. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  36. J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263–7271.
  37. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
  38. G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael, J. Fang, Z. Yifu, C. Wong, D. Montes et al., “ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation,” Zenodo, 2022.
  39. C. Li, L. Li, H. Jiang, K. Weng, Y. Geng, L. Li, Z. Ke, Q. Li, M. Cheng, W. Nie et al., “Yolov6: A single-stage object detection framework for industrial applications,” arXiv preprint arXiv:2209.02976, 2022.
  40. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 7464–7475.
  41. J. Yim and K.-A. Sohn, “Enhancing the performance of convolutional neural networks on quality degraded datasets,” in 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA).   IEEE, 2017, pp. 1–8.
  42. D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.
  43. M. Singh, S. Nagpal, R. Singh, and M. Vatsa, “Dual directed capsule network for very low resolution image recognition,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 340–349.
  44. C. Wang, C. Li, B. Luo, W. Wang, and J. Liu, “Riwnet: A moving object instance segmentation network being robust in adverse weather conditions,” arXiv preprint arXiv:2109.01820, 2021.
  45. S. Zhang, H. Tuo, J. Hu, and Z. Jing, “Domain adaptive yolo for one-stage cross-domain detection,” in Asian Conference on Machine Learning.   PMLR, 2021, pp. 785–797.
  46. J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132–7141.
  47. L. Chen, X. Chu, X. Zhang, and J. Sun, “Simple baselines for image restoration,” in European Conference on Computer Vision.   Springer, 2022, pp. 17–33.
  48. J. Dong and J. Pan, “Physics-based feature dehazing networks,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16.   Springer, 2020, pp. 188–204.
  49. D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” arXiv preprint arXiv:1606.08415, 2016.
  50. T. Hong, X. Guo, Z. Zhang, and J. Ma, “Sg-net: Semantic guided network for image dehazing,” in Asian Conference on Computer Vision.   Springer, 2022, pp. 274–289.
  51. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International journal of computer vision, vol. 88, pp. 303–338, 2010.
  52. C. Sakaridis, D. Dai, and L. Van Gool, “Semantic foggy scene understanding with synthetic data,” International Journal of Computer Vision, vol. 126, pp. 973–992, 2018.
  53. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
  54. H. Dong, J. Pan, L. Xiang, Z. Hu, X. Zhang, F. Wang, and M.-H. Yang, “Multi-scale boosted dehazing network with dense feature fusion,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 2157–2167.
  55. Z. Chen, Y. Wang, Y. Yang, and D. Liu, “Psd: Principled synthetic-to-real dehazing guided by physical priors,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 7180–7189.
  56. H. Ullah, K. Muhammad, M. Irfan, S. Anwar, M. Sajjad, A. S. Imran, and V. H. C. de Albuquerque, “Light-dehazenet: a novel lightweight cnn architecture for single image dehazing,” IEEE transactions on image processing, vol. 30, pp. 8968–8982, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.