Papers
Topics
Authors
Recent
Search
2000 character limit reached

Scaling relations for heat and momentum transport in sheared Rayleigh-Bénard convection

Published 7 Mar 2024 in physics.flu-dyn | (2403.04418v2)

Abstract: We provide scaling relations for the Nusselt number $Nu$ and the friction coefficient $C_{S}$ in sheared Rayleigh-B\'enard convection, i.e., in Rayleigh-B\'enard flow with Couette or Poiseuille type shear forcing, by extending the Grossmann & Lohse (2000,2001,2002,2004) theory to sheared thermal convection. The control parameters for these systems are the Rayleigh number $Ra$, the Prandtl number $Pr$, and the Reynolds number $Re_S$ that characterises the strength of the imposed shear. By direct numerical simulations and theoretical considerations, we show that in turbulent Rayleigh-B\'enard convection, the friction coefficients associated with the applied shear and the shear generated by the large-scale convection rolls are both well described by Prandtl's (1932) logarithmic friction law, suggesting some kind of universality between purely shear driven flows and thermal convection. These scaling relations hold well for $106 \leq Ra \leq 108$, $0.5 \leq Pr \leq 5.0$, and $0 \leq Re_S \leq 104$.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.