Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Valley-selective confinement of excitons in transition metal dichalcogenides with inhomogeneous magnetic fields (2403.04404v1)

Published 7 Mar 2024 in cond-mat.mes-hall

Abstract: Magnetized ferromagnetic disks or wires support strong inhomogeneous fields in their borders. Such magnetic fields create an effective potential, due to Zeeman and diamagnetic contributions, that can localize charge carriers. For the case of two-dimensional transition metal dichalcogenides, this potential can valley-localize excitons due to the Zeeman term, which breaks the valley symmetry. We show that the diamagnetic term is negligible when compared to the Zeeman term for monolayers of transition metal dichalcogenides. The latter is responsible for trapping excitons near the magnetized structure border with valley-dependent characteristics, in which, for one of the valleys, the exciton is confined inside the disk, while for the other, it is outside. This spatial valley separation of exciton can be probed by circularly polarized light, and moreover, we show that the inhomogeneous magnetic field magnitude, the dielectric environment, and the magnetized structure parameters can tailor the spatial separation of the exciton wavefunctions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. P. Harrison and A. Valavanis, Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures (John Wiley & Sons, 2016).
  2. T. Chakraborty,   (1999), doi.org/10.1016/B978-0-444-50258-2.X5000-7.
  3. K. S. Song and R. T. Williams, Self-Trapped Excitons , 32 (1993).
  4. A. Nogaret, Journal of Physics: Condensed Matter 22, 253201 (2010).
  5. J. Reijniers and F. M. Peeters, Applied Physics Letters 73, 357 (1998).
  6. A. Rasmita and W.-b. Gao, Nano Research 14, 1901 (2021).
  7. K. F. Mak and J. Shan, Nature Photonics 10, 216 (2016).
  8. T. Mueller and E. Malic, npj 2D Materials and Applications 2, 29 (2018).
  9. E. C. Ahn, npj 2D Materials and Applications 4, 17 (2020).
  10. J. Dormand and P. Prince, Journal of Computational and Applied Mathematics 6, 19 (1980).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com