Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge-based Parametric Digital Twins for Intelligent Building Indoor Climate Modeling (2403.04326v1)

Published 7 Mar 2024 in eess.SY, cs.AI, cs.LG, and cs.SY

Abstract: Digital transformation in the built environment generates vast data for developing data-driven models to optimize building operations. This study presents an integrated solution utilizing edge computing, digital twins, and deep learning to enhance the understanding of climate in buildings. Parametric digital twins, created using an ontology, ensure consistent data representation across diverse service systems equipped by different buildings. Based on created digital twins and collected data, deep learning methods are employed to develop predictive models for identifying patterns in indoor climate and providing insights. Both the parametric digital twin and deep learning models are deployed on edge for low latency and privacy compliance. As a demonstration, a case study was conducted in a historic building in \"Osterg\"otland, Sweden, to compare the performance of five deep learning architectures. The results indicate that the time-series dense encoder model exhibited strong competitiveness in performing multi-horizon forecasts of indoor temperature and relative humidity with low computational costs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. “Data collected by smart buildings worldwide 2010-2020 — statista,” https://www.statista.com/statistics/631151/worldwide-data-collected-by-smart-buildings/, (Accessed on 01/25/2024).
  2. L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye, Y. Fu, and W. Livingood, “A review of machine learning in building load prediction,” Applied Energy, vol. 285, p. 116452, Mar. 2021.
  3. Y. Liu, Z. Ni, M. Karlsson, and S. Gong, “Methodology for digital transformation with internet of things and cloud computing: A practical guideline for innovation in small- and medium-sized enterprises,” Sensors, vol. 21, p. 5355, Aug. 2021.
  4. Z. Ni, Y. Liu, M. Karlsson, and S. Gong, “Enabling preventive conservation of historic buildings through cloud-based digital twins: A case study in the city theatre, norrköping,” IEEE Access, vol. 10, pp. 90 924–90 939, 2022.
  5. H. Hosamo, M. H. Hosamo, H. K. Nielsen, P. R. Svennevig, and K. Svidt, “Digital twin of hvac system (hvacdt) for multiobjective optimization of energy consumption and thermal comfort based on bim framework with ann-moga,” Advances in Building Energy Research, vol. 17, pp. 125–171, Mar. 2023.
  6. Z. Ni, Y. Liu, M. Karlsson, and S. Gong, “A sensing system based on public cloud to monitor indoor environment of historic buildings,” Sensors, vol. 21, p. 5266, Aug. 2021.
  7. Q. Lu, X. Xie, A. K. Parlikad, and J. M. Schooling, “Digital twin-enabled anomaly detection for built asset monitoring in operation and maintenance,” Automation in Construction, vol. 118, p. 103277, Oct. 2020.
  8. W. Zhang, D. Yang, Y. Xu, X. Huang, J. Zhang, and M. Gidlund, “Deephealth: A self-attention based method for instant intelligent predictive maintenance in industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 17, pp. 5461–5473, Aug. 2021.
  9. Z. Ni, C. Zhang, M. Karlsson, and S. Gong, “Leveraging deep learning and digital twins to improve energy performance of buildings,” in 2023 IEEE 3rd International Conference on Industrial Electronics for Sustainable Energy Systems (IESES).   IEEE, Jul. 2023, pp. 1–6.
  10. H. Bakhtiari, J. Akander, and M. Cehlin, “Evaluation of thermal comfort in a historic building refurbished to an office building with modernized hvac systems,” Advances in Building Energy Research, vol. 14, pp. 218–237, Apr. 2020.
  11. G. Leijonhufvud and T. Broström, “Standardizing the indoor climate in historic buildings: opportunities, challenges and ways forward,” Journal of Architectural Conservation, vol. 24, pp. 3–18, Jan. 2018.
  12. Z. Ni, P. Eriksson, Y. Liu, M. Karlsson, and S. Gong, “Improving energy efficiency while preserving historic buildings with digital twins and artificial intelligence,” in IOP Conference Series: Earth and Environmental Science, vol. 863.   IOP Publishing, Oct. 2021, p. 012041.
  13. S. H. Khajavi, N. H. Motlagh, A. Jaribion, L. C. Werner, and J. Holmstrom, “Digital twin: Vision, benefits, boundaries, and creation for buildings,” IEEE Access, vol. 7, pp. 147 406–147 419, 2019.
  14. J. Zhang, H. H. Kwok, H. Luo, J. C. Tong, and J. C. Cheng, “Automatic relative humidity optimization in underground heritage sites through ventilation system based on digital twins,” Building and Environment, vol. 216, p. 108999, May 2022.
  15. H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge computing with artificial intelligence: A machine learning perspective,” ACM Computing Surveys, vol. 55, pp. 1–35, Sep. 2023.
  16. X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, “Convergence of edge computing and deep learning: A comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 22, pp. 869–904, Apr. 2020.
  17. J. Wang, Y. Liu, S. Ren, C. Wang, and S. Ma, “Edge computing-based real-time scheduling for digital twin flexible job shop with variable time window,” Robotics and Computer-Integrated Manufacturing, vol. 79, p. 102435, Feb. 2023.
  18. L. Zhang, H. Wang, H. Xue, H. Zhang, Q. Liu, D. Niyato, and Z. Han, “Digital twin-assisted edge computation offloading in industrial internet of things with noma,” IEEE Transactions on Vehicular Technology, vol. 72, pp. 11 935–11 950, Sep. 2023.
  19. Z. Wang, R. Gupta, K. Han, H. Wang, A. Ganlath, N. Ammar, and P. Tiwari, “Mobility digital twin: Concept, architecture, case study, and future challenges,” IEEE Internet of Things Journal, vol. 9, pp. 17 452–17 467, Sep. 2022.
  20. J. Drgoňa, J. Arroyo, I. C. Figueroa, D. Blum, K. Arendt, D. Kim, E. P. Ollé, J. Oravec, M. Wetter, D. L. Vrabie, and L. Helsen, “All you need to know about model predictive control for buildings,” Annual Reviews in Control, vol. 50, pp. 190–232, Jan. 2020.
  21. C. Zhang and C. Berger, “Pedestrian behavior prediction using deep learning methods for urban scenarios: A review,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, pp. 10 279–10 301, Oct. 2023.
  22. C. Zhang, Z. Ni, and C. Berger, “Spatial-temporal-spectral lstm: A transferable model for pedestrian trajectory prediction,” IEEE Transactions on Intelligent Vehicles, pp. 1–14, 2023.
  23. Z. Ni, C. Zhang, M. Karlsson, and S. Gong, “A study of deep learning-based multi-horizon building energy forecasting,” Energy and Buildings, vol. 303, p. 113810, Jan. 2024.
  24. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, publisher: MIT Press Journals.
  25. K. Cho, B. v. Merriënboer, D. Bahdanau, and Y. Bengio, “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches,” in Proceedings of SSST 2014 - 8th Workshop on Syntax, Semantics and Structure in Statistical Translation.   Association for Computational Linguistics (ACL), Sep. 2014, pp. 103–111.
  26. S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” Mar. 2018.
  27. B. Lim, S. O. Arık, N. Loeff, and T. Pfister, “Temporal fusion transformers for interpretable multi-horizon time series forecasting,” International Journal of Forecasting, vol. 37, pp. 1748–1764, Oct. 2021.
  28. C. Challu, K. G. Olivares, B. N. Oreshkin, F. G. Ramirez, M. M. Canseco, and A. Dubrawski, “Nhits: Neural hierarchical interpolation for time series forecasting,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 6989–6997, Jun. 2023.
  29. A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 11 121–11 128, Jun. 2023.
  30. A. Das, W. Kong, A. Leach, R. Sen, and R. Yu, “Long-term Forecasting with TiDE: Time-series Dense Encoder,” arXiv preprint arXiv:2304.08424, 2023.
  31. S. Liu, P. Si, M. Xu, Y. He, and Y. Zhang, “Edge big data-enabled low-cost indoor localization based on bayesian analysis of rss,” in 2017 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, Mar. 2017, pp. 1–6.
  32. A. Dhakal and K. K. Ramakrishnan, “Machine learning at the network edge for automated home intrusion monitoring,” in 2017 IEEE 25th International Conference on Network Protocols (ICNP), vol. 2017-October.   IEEE, Oct. 2017, pp. 1–6.
  33. S. K. Singh, M. Kumar, S. Tanwar, and J. H. Park, “Gru-based digital twin framework for data allocation and storage in iot-enabled smart home networks,” Future Generation Computer Systems, vol. 153, pp. 391–402, Apr. 2024.
  34. B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck, D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal, M. Bergés, D. Culler, R. K. Gupta, M. B. Kjærgaard, M. Srivastava, and K. Whitehouse, “Brick : Metadata schema for portable smart building applications,” Applied Energy, vol. 226, pp. 1273–1292, Sep. 2018.
  35. A. Afram and F. Janabi-Sharifi, “Theory and applications of hvac control systems – a review of model predictive control (mpc),” Building and Environment, vol. 72, pp. 343–355, Feb. 2014.
  36. A. O’Donovan, P. D. O’Sullivan, and M. D. Murphy, “Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches,” Applied Energy, vol. 250, pp. 991–1010, 2019.
  37. Östergötlands museum, “Om löfstad slott,” https://lofstad.se/om-slottet/, (Accessed on 12/15/2023).

Summary

We haven't generated a summary for this paper yet.