Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AO-DETR: Anti-Overlapping DETR for X-Ray Prohibited Items Detection (2403.04309v1)

Published 7 Mar 2024 in cs.CV and cs.AI

Abstract: Prohibited item detection in X-ray images is one of the most essential and highly effective methods widely employed in various security inspection scenarios. Considering the significant overlapping phenomenon in X-ray prohibited item images, we propose an Anti-Overlapping DETR (AO-DETR) based on one of the state-of-the-art general object detectors, DINO. Specifically, to address the feature coupling issue caused by overlapping phenomena, we introduce the Category-Specific One-to-One Assignment (CSA) strategy to constrain category-specific object queries in predicting prohibited items of fixed categories, which can enhance their ability to extract features specific to prohibited items of a particular category from the overlapping foreground-background features. To address the edge blurring problem caused by overlapping phenomena, we propose the Look Forward Densely (LFD) scheme, which improves the localization accuracy of reference boxes in mid-to-high-level decoder layers and enhances the ability to locate blurry edges of the final layer. Similar to DINO, our AO-DETR provides two different versions with distinct backbones, tailored to meet diverse application requirements. Extensive experiments on the PIXray and OPIXray datasets demonstrate that the proposed method surpasses the state-of-the-art object detectors, indicating its potential applications in the field of prohibited item detection. The source code will be released at https://github.com/Limingyuan001/AO-DETR-test.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. C. Miao, L. Xie, F. Wan, C. Su, H. Liu, J. Jiao, and Q. Ye, “Sixray: A large-scale security inspection x-ray benchmark for prohibited item discovery in overlapping images,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 2119–2128.
  2. Y. Wei, R. Tao, Z. Wu, Y. Ma, L. Zhang, and X. Liu, “Occluded prohibited items detection: An x-ray security inspection benchmark and de-occlusion attention module,” in Proceedings of the 28th ACM International Conference on Multimedia, 2020, pp. 138–146.
  3. B. Ma, T. Jia, M. Su, X. Jia, D. Chen, and Y. Zhang, “Automated segmentation of prohibited items in x-ray baggage images using dense de-overlap attention snake,” IEEE Transactions on Multimedia, 2022.
  4. A. Chang, Y. Zhang, S. Zhang, L. Zhong, and L. Zhang, “Detecting prohibited objects with physical size constraint from cluttered x-ray baggage images,” Knowledge-Based Systems, vol. 237, p. 107916, 2022.
  5. L. Zhang, L. Jiang, R. Ji, and H. Fan, “Pidray: A large-scale x-ray benchmark for real-world prohibited item detection,” arXiv preprint arXiv:2211.10763, 2022.
  6. R. Tao, T. Wang, Z. Wu, C. Liu, A. Liu, and X. Liu, “Few-shot x-ray prohibited item detection: A benchmark and weak-feature enhancement network,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, pp. 2012–2020.
  7. F. Shao, J. Liu, P. Wu, Z. Yang, and Z. Wu, “Exploiting foreground and background separation for prohibited item detection in overlapping x-ray images,” Pattern Recognition, vol. 122, p. 108261, 2022.
  8. M. Li, B. Ma, T. Jia, and Y. Zhang, “Pixdet: Prohibited items x-ray image detection in complex background,” in Proceedings of CECNet 2022.   IOS Press, 2022, pp. 81–90.
  9. M. Li, B. Ma, H. Wang, Y. Li, D. Chen, and T. Jia, “Pid-yolox: An x-ray prohibited items detector based on yolox,” in 2023 IEEE 13th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER).   IEEE, 2023, pp. 413–418.
  10. M. Li, B. Ma, H. Wang, D. Chen, and T. Jia, “Gadet: A geometry-aware x-ray prohibited items detector,” IEEE Sensors Journal, vol. 24, no. 2, pp. 1665–1678, 2024.
  11. C. Zhao, L. Zhu, S. Dou, W. Deng, and L. Wang, “Detecting overlapped objects in x-ray security imagery by a label-aware mechanism,” IEEE Transactions on Information Forensics and Security, vol. 17, pp. 998–1009, 2022.
  12. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 39, no. 06, pp. 1137–1149, 2017.
  13. Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.
  14. J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra r-cnn: Towards balanced learning for object detection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp. 821–830.
  15. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European conference on computer vision.   Springer, 2020, pp. 213–229.
  16. X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable {detr}: Deformable transformers for end-to-end object detection,” in International Conference on Learning Representations, 2021. [Online]. Available: https://openreview.net/forum?id=gZ9hCDWe6ke
  17. H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. M. Ni, and H.-Y. Shum, “Dino: Detr with improved denoising anchor boxes for end-to-end object detection,” arXiv preprint arXiv:2203.03605, 2022.
  18. Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 9627–9636.
  19. S. Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li, “Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 9759–9768.
  20. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “Yolox: Exceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430, 2021.
  21. A. Neubeck and L. Van Gool, “Efficient non-maximum suppression,” in 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, 2006, pp. 850–855.
  22. S. Liu, F. Li, H. Zhang, X. Yang, X. Qi, H. Su, J. Zhu, and L. Zhang, “Dab-detr: Dynamic anchor boxes are better queries for detr,” arXiv preprint arXiv:2201.12329, 2022.
  23. F. Li, H. Zhang, S. Liu, J. Guo, L. M. Ni, and L. Zhang, “Dn-detr: Accelerate detr training by introducing query denoising,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 619–13 627.
  24. Z. Zong, G. Song, and Y. Liu, “Detrs with collaborative hybrid assignments training,” in Proceedings of the IEEE/CVF international conference on computer vision, 2023, pp. 6748–6758.
  25. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
  26. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14.   Springer, 2016, pp. 21–37.
  27. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2980–2988.
  28. T. Kong, F. Sun, H. Liu, Y. Jiang, L. Li, and J. Shi, “Foveabox: Beyound anchor-based object detection,” IEEE Transactions on Image Processing, vol. 29, pp. 7389–7398, 2020.
  29. Z. Ge, S. Liu, Z. Li, O. Yoshie, and J. Sun, “Ota: Optimal transport assignment for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 303–312.
  30. K. Kim and H. S. Lee, “Probabilistic anchor assignment with iou prediction for object detection,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXV 16.   Springer, 2020, pp. 355–371.
  31. D. Jia, Y. Yuan, H. He, X. Wu, H. Yu, W. Lin, L. Sun, C. Zhang, and H. Hu, “Detrs with hybrid matching,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 19 702–19 712.
  32. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
  33. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” arXiv preprint arXiv:2207.02696, 2022.
  34. C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd: Deconvolutional single shot detector,” arXiv preprint arXiv:1701.06659, 2017.
  35. Z. Li and F. Zhou, “Fssd: feature fusion single shot multibox detector,” arXiv preprint arXiv:1712.00960, 2017.
  36. R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 1440–1448.
  37. J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional networks,” Advances in neural information processing systems, vol. 29, 2016.
  38. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.
  39. M. Hofinger, S. R. Bulo, L. Porzi, A. Knapitsch, T. Pock, and P. Kontschieder, “Improving optical flow on a pyramid level,” in European Conference on Computer Vision.   Springer, 2020, pp. 770–786.
  40. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  41. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 10 012–10 022.
  42. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.   Springer, 2014, pp. 740–755.
  43. M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International journal of computer vision, vol. 88, pp. 303–338, 2010.
  44. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition.   Ieee, 2009, pp. 248–255.
  45. S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for deep neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1492–1500.
  46. H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized intersection over union: A metric and a loss for bounding box regression,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.
  47. X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li, J. Tang, and J. Yang, “Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection,” Advances in Neural Information Processing Systems, vol. 33, pp. 21 002–21 012, 2020.
  48. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961–2969.
  49. T. W. Webb, N. Bhowmik, Y. F. A. Gaus, and T. P. Breckon, “Operationalizing convolutional neural network architectures for prohibited object detection in x-ray imagery,” in 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA).   IEEE, 2021, pp. 610–615.
  50. M. Wang, H. Du, W. Mei, S. Wang, and D. Yuan, “Material-aware cross-channel interaction attention (mcia) for occluded prohibited item detection,” The Visual Computer, vol. 39, no. 7, pp. 2865–2877, 2023.
  51. C. Ma, L. Zhuo, J. Li, Y. Zhang, and J. Zhang, “Occluded prohibited object detection in x-ray images with global context-aware multi-scale feature aggregation,” Neurocomputing, vol. 519, pp. 1–16, 2023.
  52. K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open mmlab detection toolbox and benchmark,” arXiv preprint arXiv:1906.07155, 2019.
Citations (4)

Summary

We haven't generated a summary for this paper yet.