Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SSDRec: Self-Augmented Sequence Denoising for Sequential Recommendation (2403.04278v1)

Published 7 Mar 2024 in cs.IR

Abstract: Traditional sequential recommendation methods assume that users' sequence data is clean enough to learn accurate sequence representations to reflect user preferences. In practice, users' sequences inevitably contain noise (e.g., accidental interactions), leading to incorrect reflections of user preferences. Consequently, some pioneer studies have explored modeling sequentiality and correlations in sequences to implicitly or explicitly reduce noise's influence. However, relying on only available intra-sequence information (i.e., sequentiality and correlations in a sequence) is insufficient and may result in over-denoising and under-denoising problems (OUPs), especially for short sequences. To improve reliability, we propose to augment sequences by inserting items before denoising. However, due to the data sparsity issue and computational costs, it is challenging to select proper items from the entire item universe to insert into proper positions in a target sequence. Motivated by the above observation, we propose a novel framework--Self-augmented Sequence Denoising for sequential Recommendation (SSDRec) with a three-stage learning paradigm to solve the above challenges. In the first stage, we empower SSDRec by a global relation encoder to learn multi-faceted inter-sequence relations in a data-driven manner. These relations serve as prior knowledge to guide subsequent stages. In the second stage, we devise a self-augmentation module to augment sequences to alleviate OUPs. Finally, we employ a hierarchical denoising module in the third stage to reduce the risk of false augmentations and pinpoint all noise in raw sequences. Extensive experiments on five real-world datasets demonstrate the superiority of \model over state-of-the-art denoising methods and its flexible applications to mainstream sequential recommendation models. The source code is available at https://github.com/zc-97/SSDRec.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Q. Zhu, X. Zhou, Z. Song, J. Tan, and L. Guo, “Dan: Deep attention neural network for news recommendation,” in AAAI, 2019, pp. 5973–5980.
  2. Z. Ren, S. Liang, P. Li, S. Wang, and M. de Rijke, “Social collaborative viewpoint regression with explainable recommendations,” in WSDM, 2017, pp. 485–494.
  3. X. Zhou, D. Qin, X. Lu, L. Chen, and Y. Zhang, “Online social media recommendation over streams,” in ICDE, 2019, pp. 938–949.
  4. G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai, “Deep interest network for click-through rate prediction,” in KDD, 2018, pp. 1059–1068.
  5. Z. Li, X. Shen, Y. Jiao, X. Pan, P. Zou, X. Meng, C. Yao, and J. Bu, “Hierarchical bipartite graph neural networks: Towards large-scale e-commerce applications,” in ICDE, 2020, pp. 1677–1688.
  6. S. Rendle, C. Freudenthaler, Z. Gantner, and S. Lars, “Bpr: Bayesian personalized ranking from implicit feedback.” UAI, pp. 452–461, 2009.
  7. W.-S. Hwang, J. Parc, S.-W. Kim, J. Lee, and D. Lee, ““told you i didn’t like it”: Exploiting uninteresting items for effective collaborative filtering,” in ICDE, 2016, pp. 349–360.
  8. R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph convolutional neural networks for web-scale recommender systems,” in KDD, 2018, pp. 974–983.
  9. X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural graph collaborative filtering,” in SIGIR, 2019, pp. 165–174.
  10. X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang, “Lightgcn: Simplifying and powering graph convolution network for recommendation,” in SIGIR, 2020, pp. 639–648.
  11. K. Mao, J. Zhu, X. Xiao, B. Lu, Z. Wang, and X. He, “Ultragcn: Ultra simplification of graph convolutional networks for recommendation,” in CIKM, 2021, pp. 1253–1262.
  12. B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” 2016.
  13. T. Donkers, B. Loepp, and J. Ziegler, “Sequential user-based recurrent neural network recommendations,” in RecSys, 2017, pp. 152–160.
  14. J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive session-based recommendation,” in CIKM, 2017, pp. 1419–1428.
  15. J. Tang and K. Wang, “Personalized top-n sequential recommendation via convolutional sequence embedding,” in WSDM, 2018, pp. 565–573.
  16. W.-C. Kang and J. McAuley, “Self-attentive sequential recommendation,” in ICDM, 2018, pp. 197–206.
  17. F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer,” in CIKM, 2019, pp. 1441–1450.
  18. S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation with graph neural networks,” in AAAI, 2019, pp. 346–353.
  19. G. Tolomei, M. Lalmas, A. Farahat, and A. Haines, “You must have clicked on this ad by mistake! data-driven identification of accidental clicks on mobile ads with applications to advertiser cost discounting and click-through rate prediction,” IJDSA, vol. 7, no. 1, pp. 53–66, 2019.
  20. C. Wu, F. Wu, T. Qi, Q. Liu, X. Tian, J. Li, W. He, Y. Huang, and X. Xie, “Feedrec: News feed recommendation with various user feedbacks,” in WWW, 2022, pp. 2088–2097.
  21. C. Zhang, R. Chen, X. Zhao, Q. Han, and L. Li, “Denoising and prompt-tuning for multi-behavior recommendation,” in WWW, 2023, pp. 1355–1363.
  22. W. Wang, F. Feng, X. He, L. Nie, and T.-S. Chua, “Denoising implicit feedback for recommendation,” in WSDM, 2021, pp. 373–381.
  23. J. Yuan, Z. Song, M. Sun, X. Wang, and W. X. Zhao, “Dual sparse attention network for session-based recommendation,” in AAAI, 2021, pp. 4635–4643.
  24. Y. Qin, P. Wang, and C. Li, “The world is binary: Contrastive learning for denoising next basket recommendation,” in SIGIR, 2021, pp. 859–868.
  25. X. Tong, P. Wang, C. Li, L. Xia, and S. Niu, “Pattern-enhanced contrastive policy learning network for sequential recommendation.” in IJCAI, 2021, pp. 1593–1599.
  26. Y. Sun, B. Wang, Z. Sun, and X. Yang, “Does every data instance matter? enhancing sequential recommendation by eliminating unreliable data,” in IJCAI, 2021, pp. 1579–1585.
  27. C. Zhang, Y. Du, X. Zhao, Q. Han, R. Chen, and L. Li, “Hierarchical item inconsistency signal learning for sequence denoising in sequential recommendation,” in CIKM, 2022, pp. 2508–2518.
  28. K. Zhou, H. Yu, W. X. Zhao, and J.-R. Wen, “Filter-enhanced mlp is all you need for sequential recommendation,” in WWW, 2022, pp. 2388–2399.
  29. Y. Lin, C. Wang, Z. Chen, Z. Ren, X. Xin, Q. Yan, M. de Rijke, X. Cheng, and P. Ren, “A self-correcting sequential recommender,” in WWW, 2023, pp. 1283–1293.
  30. C. Wang, M. Zhang, W. Ma, Y. Liu, and S. Ma, “Make it a chorus: Knowledge-and time-aware item modeling for sequential recommendation,” in SIGIR, 2020, pp. 109–118.
  31. Q. Han, C. Zhang, R. Chen, R. Lai, H. Song, and L. Li, “Multi-faceted global item relation learning for session-based recommendation,” in SIGIR, 2022, pp. 1705–1715.
  32. P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention networks,” in ICLR, 2018.
  33. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  34. Q. Wang, H. Yin, H. Wang, Q. V. H. Nguyen, Z. Huang, and L. Cui, “Enhancing collaborative filtering with generative augmentation,” in KDD, 2019, pp. 548–556.
  35. S. Wu, Y. Li, D. Zhang, Y. Zhou, and Z. Wu, “Topicka: Generating commonsense knowledge-aware dialogue responses towards the recommended topic fact,” in IJCAI, 2021, pp. 3766–3772.
  36. J. Yu, M. Gao, H. Yin, J. Li, C. Gao, and Q. Wang, “Generating reliable friends via adversarial training to improve social recommendation,” in ICDM, 2019, pp. 768–777.
  37. X. Zhao, H. Liu, H. Liu, J. Tang, W. Guo, J. Shi, S. Wang, H. Gao, and B. Long, “Autodim: Field-aware embedding dimension searchin recommender systems,” in WWW, 2021, pp. 3015–3022.
  38. W. Krichene and S. Rendle, “On sampled metrics for item recommendation,” in KDD, 2020, pp. 1748–1757.
  39. R. Cai, J. Wu, A. San, C. Wang, and H. Wang, “Category-aware collaborative sequential recommendation,” in SIGIR, 2021, pp. 388–397.
  40. Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “Stamp: Short-term attention/memory priority model for session-based recommendation,” in KDD, 2018, pp. 1831–1839.
  41. Y. Yang, C. Huang, L. Xia, C. Huang, D. Luo, and K. Lin, “Debiased contrastive learning for sequential recommendation,” in WWW, 2023, pp. 1063–1073.
  42. Y. Gao, Y. Du, Y. Hu, L. Chen, X. Zhu, Z. Fang, and B. Zheng, “Self-guided learning to denoise for robust recommendation,” in SIGIR, 2022, pp. 1412–1422.
  43. W. Lin, X. Zhao, Y. Wang, Y. Zhu, and W. Wang, “Autodenoise: Automatic data instance denoising for recommendations,” in WWW, 2023, pp. 1003–1011.
  44. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in AISTATS, 2010, pp. 249–256.
  45. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2015.
  46. Y. Sun, F. Yuan, M. Yang, G. Wei, Z. Zhao, and D. Liu, “A generic network compression framework for sequential recommender systems,” in SIGIR, 2020, pp. 1299–1308.
  47. E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” 2017.
  48. W. X. Zhao, S. Mu, Y. Hou, Z. Lin, Y. Chen, X. Pan, K. Li, Y. Lu, H. Wang, C. Tian et al., “Recbole: Towards a unified, comprehensive and efficient framework for recommendation algorithms,” in CIKM, 2021, pp. 4653–4664.
  49. Y. Dang, E. Yang, G. Guo, L. Jiang, X. Wang, X. Xu, Q. Sun, and H. Liu, “Uniform sequence better: Time interval aware data augmentation for sequential recommendation,” in AAAI, vol. 37, no. 4, 2023, pp. 4225–4232.
  50. X. Li, A. Sun, M. Zhao, J. Yu, K. Zhu, D. Jin, M. Yu, and R. Yu, “Multi-intention oriented contrastive learning for sequential recommendation,” in WSDM, 2023, pp. 411–419.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Chi Zhang (567 papers)
  2. Qilong Han (9 papers)
  3. Rui Chen (310 papers)
  4. Xiangyu Zhao (192 papers)
  5. Peng Tang (47 papers)
  6. Hongtao Song (4 papers)
Citations (2)