Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decentralized and Equitable Optimal Transport (2403.04259v2)

Published 7 Mar 2024 in math.OC and cs.LG

Abstract: This paper considers the decentralized (discrete) optimal transport (D-OT) problem. In this setting, a network of agents seeks to design a transportation plan jointly, where the cost function is the sum of privately held costs for each agent. We reformulate the D-OT problem as a constraint-coupled optimization problem and propose a single-loop decentralized algorithm with an iteration complexity of O(1/{\epsilon}) that matches existing centralized first-order approaches. Moreover, we propose the decentralized equitable optimal transport (DE-OT) problem. In DE-OT, in addition to cooperatively designing a transportation plan that minimizes transportation costs, agents seek to ensure equity in their individual costs. The iteration complexity of the proposed method to solve DE-OT is also O(1/{\epsilon}). This rate improves existing centralized algorithms, where the best iteration complexity obtained is O(1/{\epsilon}2).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. G. Monge, “Memory on the theory of cut and fill,” Mem. Math. Phys. Acad. Royal Sci., pp. 666–704, 1781.
  2. L. V. Kantorovich, “On the translocation of masses,” in Dokl. Akad. Nauk. USSR (NS), vol. 37, 1942, pp. 199–201.
  3. E. F. Montesuma, F. N. Mboula, and A. Souloumiac, “Recent advances in optimal transport for machine learning,” arXiv preprint arXiv:2306.16156, 2023.
  4. M. Scetbon, L. Meunier, J. Atif, and M. Cuturi, “Equitable and optimal transport with multiple agents,” in AISTATS, 2021.
  5. M. Huang, S. Ma, and L. Lai, “On the convergence of projected alternating maximization for equitable and optimal transport,” arXiv preprint arXiv:2109.15030, 2021.
  6. J. Altschuler, J. Niles-Weed, and P. Rigollet, “Near-linear time approximation algorithms for optimal transport via sinkhorn iteration,” Advances in neural information processing systems, vol. 30, 2017.
  7. G. Peyré, M. Cuturi, et al., “Computational optimal transport: With applications to data science,” Foundations and Trends® in Machine Learning, vol. 11, no. 5-6, pp. 355–607, 2019.
  8. M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” Advances in neural information processing systems, vol. 26, 2013.
  9. T. Lin, N. Ho, and M. I. Jordan, “On the efficiency of entropic regularized algorithms for optimal transport,” Journal of Machine Learning Research, vol. 23, no. 137, pp. 1–42, 2022.
  10. P. Dvurechensky, A. Gasnikov, and A. Kroshnin, “Computational optimal transport: Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm,” in International conference on machine learning.   PMLR, 2018, pp. 1367–1376.
  11. A. Chambolle and J. P. Contreras, “Accelerated bregman primal-dual methods applied to optimal transport and wasserstein barycenter problems,” SIAM Journal on Mathematics of Data Science, vol. 4, no. 4, pp. 1369–1395, 2022.
  12. A. Jambulapati, A. Sidford, and K. Tian, “A direct tilde {{\{{O}}\}}(1/epsilon) iteration parallel algorithm for optimal transport,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  13. G. Li, Y. Chen, Y. Chi, H. V. Poor, and Y. Chen, “Fast computation of optimal transport via entropy-regularized extragradient methods,” arXiv preprint arXiv:2301.13006, 2023.
  14. D. A. Lorenz, P. Manns, and C. Meyer, “Quadratically regularized optimal transport,” Applied Mathematics & Optimization, vol. 83, no. 3, pp. 1919–1949, 2021.
  15. D. A. Pasechnyuk, M. Persiianov, P. Dvurechensky, and A. Gasnikov, “Algorithms for euclidean regularised optimal transport,” arXiv preprint arXiv:2307.00321, 2023.
  16. R. Zhang and Q. Zhu, “Consensus-based distributed discrete optimal transport for decentralized resource matching,” IEEE Transactions on Signal and Information Processing over Networks, vol. 5, no. 3, pp. 511–524, 2019.
  17. J. Hughes and J. Chen, “Fair and distributed dynamic optimal transport for resource allocation over networks,” in 2021 55th Annual Conference on Information Sciences and Systems (CISS).   IEEE, 2021, pp. 1–6.
  18. X. Wang, H. Xu, and M. Yang, “Decentralized entropic optimal transport for privacy-preserving distributed distribution comparison,” arXiv preprint arXiv:2301.12065, 2023.
  19. A. Falsone, I. Notarnicola, G. Notarstefano, and M. Prandini, “Tracking-ADMM for distributed constraint-coupled optimization,” Automatica, vol. 117, p. 108962, 2020.
  20. T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization via inexact consensus ADMM,” IEEE Transactions on Signal Processing, vol. 63, no. 2, pp. 482–497, 2014.
  21. T.-H. Chang, “A proximal dual consensus ADMM method for multi-agent constrained optimization,” IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3719–3734, 2016.
  22. Y. Su, Q. Wang, and C. Sun, “Distributed primal-dual method for convex optimization with coupled constraints,” IEEE Transactions on Signal Processing, vol. 70, pp. 523–535, 2021.
  23. S. A. Alghunaim, K. Yuan, and A. H. Sayed, “A proximal diffusion strategy for multiagent optimization with sparse affine constraints,” IEEE Transactions on Automatic Control, vol. 65, no. 11, pp. 4554–4567, 2019.
  24. J. Li and H. Su, “Implicit tracking-based distributed constraint-coupled optimization,” IEEE Transactions on Control of Network Systems, 2022.
  25. J. Li, Q. An, and H. Su, “Proximal nested primal-dual gradient algorithms for distributed constraint-coupled composite optimization,” Applied Mathematics and Computation, vol. 444, p. 127801, 2023.
  26. F. Iutzeler and L. Condat, “Distributed projection on the simplex and ℓ1subscriptℓ1\ell_{1}roman_ℓ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ball via ADMM and gossip,” IEEE Signal Processing Letters, vol. 25, no. 11, pp. 1650–1654, 2018.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets