Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces (2403.04217v2)

Published 7 Mar 2024 in cond-mat.mtrl-sci, cond-mat.dis-nn, and physics.comp-ph

Abstract: Machine learning interatomic potentials (MLIPs) are one of the main techniques in the materials science toolbox, able to bridge ab initio accuracy with the computational efficiency of classical force fields. This allows simulations ranging from atoms, molecules, and biosystems, to solid and bulk materials, surfaces, nanomaterials, and their interfaces and complex interactions. A recent class of advanced MLIPs, which use equivariant representations and deep graph neural networks, is known as universal models. These models are proposed as foundational models suitable for any system, covering most elements from the periodic table. Current universal MLIPs (UIPs) have been trained with the largest consistent dataset available nowadays. However, these are composed mostly of bulk materials' DFT calculations. In this article, we assess the universality of all openly available UIPs, namely MACE, CHGNet, and M3GNet, in a representative task of generalization: calculation of surface energies. We find that the out-of-the-box foundational models have significant shortcomings in this task, with errors correlated to the total energy of surface simulations, having an out-of-domain distance from the training dataset. Our results show that while UIPs are an efficient starting point for fine-tuning specialized models, we envision the potential of increasing the coverage of the materials space towards universal training datasets for MLIPs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. B. Sanchez-Lengeling and A. Aspuru-Guzik, Inverse molecular design using machine learning: Generative models for matter engineering, Science 361, 360 (2018).
  2. G. R. Schleder, B. Focassio, and A. Fazzio, Machine learning for materials discovery: Two-dimensional topological insulators, Applied Physics Reviews 8, 10.1063/5.0055035 (2021).
  3. V. L. Deringer, M. A. Caro, and G. Csányi, Machine learning interatomic potentials as emerging tools for materials science, Advanced Materials 31, 10.1002/adma.201902765 (2019).
  4. J. D. Morrow, J. L. A. Gardner, and V. L. Deringer, How to validate machine-learned interatomic potentials, The Journal of Chemical Physics 158, 10.1063/5.0139611 (2023).
  5. T. Xie and J. C. Grossman, Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties, Physical Review Letters 120, 10.1103/physrevlett.120.145301 (2018).
  6. K. Choudhary and B. DeCost, Atomistic line graph neural network for improved materials property predictions, npj Computational Materials 7, 10.1038/s41524-021-00650-1 (2021).
  7. T. W. Ko and S. P. Ong, Recent advances and outstanding challenges for machine learning interatomic potentials, Nature Computational Science 3, 998–1000 (2023).
  8. C. Chen and S. P. Ong, A universal graph deep learning interatomic potential for the periodic table, Nature Computational Science 2, 718–728 (2022).
  9. A. V. Shapeev, Moment tensor potentials: A class of systematically improvable interatomic potentials, Multiscale Modeling & Simulation 14, 1153 (2016).
  10. S. R. Xie, M. Rupp, and R. G. Hennig, Ultra-fast interpretable machine-learning potentials, npj Computational Materials 9, 10.1038/s41524-023-01092-7 (2023).
  11. J. L. A. Gardner, K. T. Baker, and V. L. Deringer, Synthetic pre-training for neural-network interatomic potentials, Machine Learning: Science and Technology 5, 015003 (2024).
  12. G. R. Schleder, C. M. Acosta, and A. Fazzio, Exploring two-dimensional materials thermodynamic stability via machine learning, ACS Applied Materials & Interfaces 12, 20149–20157 (2019b).
  13. G. A. Tritsaris, S. Carr, and G. R. Schleder, Computational design of moiré assemblies aided by artificial intelligence, Applied Physics Reviews 8, 10.1063/5.0044511 (2021).
  14. G. R. Schleder, M. Pizzochero, and E. Kaxiras, One-dimensional moiré physics and chemistry in heterostrained bilayer graphene, The Journal of Physical Chemistry Letters 14, 8853–8858 (2023).
Citations (7)

Summary

We haven't generated a summary for this paper yet.