Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional quantum key distribution using a multi-plane light converter (2403.04210v2)

Published 7 Mar 2024 in quant-ph and physics.optics

Abstract: High-dimensional quantum key distribution (QKD) offers higher information capacity and stronger resilience to noise compared to its binary counterpart. However, these advantages are often hindered by the difficulty of realizing the required high-dimensional measurements and transformations. Here, we implement a large-scale multi-plane light converter (MPLC) and program it as a high-dimensional mode sorter of spatial modes for QKD. Using the MPLC, we demonstrate five-dimensional QKD with six mutually unbiased bases and 25-dimensional QKD with two mutually unbiased bases in the same experimental setup. Furthermore, we propose a construction of pairs of mutually unbiased bases that are robust to experimental errors, with measurement complexity scaling only with the square root of the encoded dimension. This approach paves the way for QKD implementations in higher dimensions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” \JournalTitleProc. IEEE International Conference on Computers, Systems and Signal Processing (1984).
  2. A. K. Ekert, “Quantum cryptography based on bell’s theorem,” \JournalTitlePhysical review letters 67, 661 (1991).
  3. S. Wang, Z.-Q. Yin, D.-Y. He, et al., “Twin-field quantum key distribution over 830-km fibre,” \JournalTitleNature photonics 16, 154–161 (2022).
  4. T. Schmitt-Manderbach, H. Weier, M. Fürst, et al., “Experimental demonstration of free-space decoy-state quantum key distribution over 144 km,” \JournalTitlePhysical Review Letters 98, 010504 (2007).
  5. S.-K. Liao, W.-Q. Cai, W.-Y. Liu, et al., “Satellite-to-ground quantum key distribution,” \JournalTitleNature 549, 43–47 (2017).
  6. F. Xu, X. Ma, Q. Zhang, et al., “Secure quantum key distribution with realistic devices,” \JournalTitleReviews of Modern Physics 92, 025002 (2020).
  7. N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of quantum key distribution using d-level systems,” \JournalTitlePhysical review letters 88, 127902 (2002).
  8. M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” \JournalTitleLight: Science & Applications 7, 17146–17146 (2018).
  9. M. Erhard, M. Krenn, and A. Zeilinger, “Advances in high-dimensional quantum entanglement,” \JournalTitleNature Reviews Physics 2, 365–381 (2020).
  10. S. Walborn, D. Lemelle, M. Almeida, and P. S. Ribeiro, “Quantum key distribution with higher-order alphabets using spatially encoded qudits,” \JournalTitlePhysical review letters 96, 090501 (2006).
  11. S. Etcheverry, G. Cañas, E. Gómez, et al., “Quantum key distribution session with 16-dimensional photonic states,” \JournalTitleScientific reports 3, 2316 (2013).
  12. M. Mirhosseini, O. S. Magaña-Loaiza, M. N. O’Sullivan, et al., “High-dimensional quantum cryptography with twisted light,” \JournalTitleNew Journal of Physics 17, 033033 (2015).
  13. Y. Ding, D. Bacco, K. Dalgaard, et al., “High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits,” \JournalTitlenpj Quantum Information 3, 25 (2017).
  14. A. Sit, F. Bouchard, R. Fickler, et al., “High-dimensional intracity quantum cryptography with structured photons,” \JournalTitleOptica 4, 1006–1010 (2017).
  15. F. Bouchard, R. Fickler, R. W. Boyd, and E. Karimi, “High-dimensional quantum cloning and applications to quantum hacking,” \JournalTitleScience advances 3, e1601915 (2017).
  16. F. Bouchard, K. Heshami, D. England, et al., “Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons,” \JournalTitleQuantum 2, 111 (2018).
  17. D. Cozzolino, D. Bacco, B. Da Lio, et al., “Orbital angular momentum states enabling fiber-based high-dimensional quantum communication,” \JournalTitlePhysical Review Applied 11, 064058 (2019).
  18. T. B. H. Tentrup, W. Luiten, R. v. d. Meer, et al., “Large-alphabet quantum key distribution using spatially encoded light,” \JournalTitleNew journal of physics 21, 123044 (2019).
  19. Y. Zhou, M. Mirhosseini, S. Oliver, et al., “Using all transverse degrees of freedom in quantum communications based on a generic mode sorter,” \JournalTitleOptics express 27, 10383–10394 (2019).
  20. E. Otte, I. Nape, C. Rosales-Guzmán, et al., “High-dimensional cryptography with spatial modes of light: tutorial,” \JournalTitleJOSA B 37, A309–A323 (2020).
  21. B. Da Lio, D. Cozzolino, N. Biagi, et al., “Path-encoded high-dimensional quantum communication over a 2-km multicore fiber,” \JournalTitlenpj Quantum Information 7, 63 (2021).
  22. X.-M. Hu, C. Zhang, Y. Guo, et al., “Pathways for entanglement-based quantum communication in the face of high noise,” \JournalTitlePhysical Review Letters 127, 110505 (2021).
  23. E. A. Ortega, K. Dovzhik, J. Fuenzalida, et al., “Experimental space-division multiplexed polarization-entanglement distribution through 12 paths of a multicore fiber,” \JournalTitlePRX Quantum 2, 040356 (2021).
  24. M. Stasiuk, F. Hufnagel, X. Gao, et al., “High-dimensional encoding in the round-robin differential-phase-shift protocol,” \JournalTitleQuantum 7, 1207 (2023).
  25. N. T. Islam, C. C. W. Lim, C. Cahall, et al., “Provably secure and high-rate quantum key distribution with time-bin qudits,” \JournalTitleScience advances 3, e1701491 (2017).
  26. C. Lee, D. Bunandar, Z. Zhang, et al., “Large-alphabet encoding for higher-rate quantum key distribution,” \JournalTitleOptics express 27, 17539–17549 (2019).
  27. I. Vagniluca, B. Da Lio, D. Rusca, et al., “Efficient time-bin encoding for practical high-dimensional quantum key distribution,” \JournalTitlePhysical Review Applied 14, 014051 (2020).
  28. T. Ikuta, S. Akibue, Y. Yonezu, et al., “Scalable implementation of (d+ 1) mutually unbiased bases for d-dimensional quantum key distribution,” \JournalTitlePhysical Review Research 4, L042007 (2022).
  29. J. C. Chapman, C. C. Lim, and P. G. Kwiat, “Hyperentangled time-bin and polarization quantum key distribution,” \JournalTitlePhysical Review Applied 18, 044027 (2022).
  30. K. Sulimany, R. Dudkiewicz, S. Korenblit, et al., “Fast and simple one-way high-dimensional quantum key distribution,” \JournalTitlearXiv preprint arXiv:2105.04733 (2021).
  31. I. Ali-Khan, C. J. Broadbent, and J. C. Howell, “Large-alphabet quantum key distribution using energy-time entangled bipartite states,” \JournalTitlePhysical review letters 98, 060503 (2007).
  32. J. Mower, Z. Zhang, P. Desjardins, et al., “High-dimensional quantum key distribution using dispersive optics,” \JournalTitlePhysical Review A 87, 062322 (2013).
  33. C. Lee, Z. Zhang, G. R. Steinbrecher, et al., “Entanglement-based quantum communication secured by nonlocal dispersion cancellation,” \JournalTitlePhysical Review A 90, 062331 (2014).
  34. T. Zhong, H. Zhou, R. D. Horansky, et al., “Photon-efficient quantum key distribution using time–energy entanglement with high-dimensional encoding,” \JournalTitleNew Journal of Physics 17, 022002 (2015).
  35. X. Liu, X. Yao, H. Wang, et al., “Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km,” \JournalTitleApplied Physics Letters 114 (2019).
  36. F. Bouchard, D. England, P. J. Bustard, et al., “Achieving ultimate noise tolerance in quantum communication,” \JournalTitlePhysical Review Applied 15, 024027 (2021).
  37. J. Liu, Z. Lin, D. Liu, et al., “High-dimensional quantum key distribution using energy-time entanglement over 242 km partially deployed fiber,” \JournalTitleQuantum Science and Technology 9, 015003 (2023).
  38. L. Bulla, M. Pivoluska, K. Hjorth, et al., “Nonlocal temporal interferometry for highly resilient free-space quantum communication,” \JournalTitlePhysical Review X 13, 021001 (2023).
  39. K.-C. Chang, M. C. Sarihan, X. Cheng, et al., “Large-alphabet time-bin quantum key distribution and einstein–podolsky–rosen steering via dispersive optics,” \JournalTitleQuantum Science and Technology 9, 015018 (2023).
  40. H. Cao, S.-C. Gao, C. Zhang, et al., “Distribution of high-dimensional orbital angular momentum entanglement over a 1 km few-mode fiber,” \JournalTitleOptica 7, 232–237 (2020).
  41. K. Sulimany and Y. Bromberg, “All-fiber source and sorter for multimode correlated photons,” \JournalTitlenpj Quantum Information 8, 4 (2022).
  42. G. Vallone, V. D’Ambrosio, A. Sponselli, et al., “Free-space quantum key distribution by rotation-invariant twisted photons,” \JournalTitlePhysical review letters 113, 060503 (2014).
  43. J.-F. Morizur, L. Nicholls, P. Jian, et al., “Programmable unitary spatial mode manipulation,” \JournalTitleJOSA A 27, 2524–2531 (2010).
  44. G. Labroille, B. Denolle, P. Jian, et al., “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” \JournalTitleOptics express 22, 15599–15607 (2014).
  45. H. Kupianskyi, S. A. Horsley, and D. B. Phillips, “High-dimensional spatial mode sorting and optical circuit design using multi-plane light conversion,” \JournalTitleAPL Photonics 8 (2023).
  46. H. Kupianskyi, S. A. Horsley, and D. B. Phillips, “All-optically untangling light propagation through multimode fibers,” \JournalTitleOptica 11, 101–112 (2024).
  47. N. K. Fontaine, R. Ryf, H. Chen, et al., “Laguerre-gaussian mode sorter,” \JournalTitleNature communications 10, 1865 (2019).
  48. F. Brandt, M. Hiekkamäki, F. Bouchard, et al., “High-dimensional quantum gates using full-field spatial modes of photons,” \JournalTitleOptica 7, 98–107 (2020).
  49. M. Hiekkamäki and R. Fickler, “High-dimensional two-photon interference effects in spatial modes,” \JournalTitlePhysical Review Letters 126, 123601 (2021).
  50. O. Lib, K. Sulimany, and Y. Bromberg, “Processing entangled photons in high dimensions with a programmable light converter,” \JournalTitlePhysical Review Applied 18, 014063 (2022).
  51. O. Lib and Y. Bromberg, “Resource-efficient photonic quantum computation with high-dimensional cluster states,” \JournalTitlearXiv preprint arXiv:2309.10464 (2023).
  52. S. P. Walborn, C. Monken, S. Pádua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” \JournalTitlePhysics Reports 495, 87–139 (2010).
  53. N. H. Valencia, V. Srivastav, M. Pivoluska, et al., “High-dimensional pixel entanglement: efficient generation and certification,” \JournalTitleQuantum 4, 376 (2020).
  54. M. Mafu, A. Dudley, S. Goyal, et al., “Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases,” \JournalTitlePhysical Review A 88, 032305 (2013).
  55. W. K. Wootters and B. D. Fields, “Optimal state-determination by mutually unbiased measurements,” \JournalTitleAnnals of Physics 191, 363–381 (1989).
  56. L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” \JournalTitlePhysical Review A 82, 030301 (2010).
  57. C. Taballione, R. van der Meer, H. J. Snijders, et al., “A universal fully reconfigurable 12-mode quantum photonic processor,” \JournalTitleMaterials for Quantum Technology 1, 035002 (2021).
  58. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” \JournalTitleNature 412, 313–316 (2001).
  59. M. Krenn, M. Huber, R. Fickler, et al., “Generation and confirmation of a (100×\times× 100)-dimensional entangled quantum system,” \JournalTitleProceedings of the National Academy of Sciences 111, 6243–6247 (2014).
  60. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibres,” \JournalTitleNature Photonics 9, 529–535 (2015).
  61. M. Berta, M. Christandl, R. Colbeck, et al., “The uncertainty principle in the presence of quantum memory,” \JournalTitleNature Physics 6, 659–662 (2010).
  62. N. K. Fontaine, H. Chen, M. Mazur, et al., “Hermite-gaussian mode multiplexer supporting 1035 modes,” in Optical Fiber Communication Conference, (Optica Publishing Group, 2021), pp. M3D–4.
  63. O. Lib, K. Sulimany, and Y. Bromberg, “Data for: High-dimensional quantum key distribution using a multi-plane light converter,” \JournalTitlehttps://doi.org/10.5281/zenodo.10645760 (2024).
Citations (3)

Summary

We haven't generated a summary for this paper yet.