Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Power of Lorentz Quantum Computer (2403.04170v2)

Published 7 Mar 2024 in quant-ph and cs.CC

Abstract: We demonstrate the superior capabilities of the recently proposed Lorentz quantum computer (LQC) compared to conventional quantum computers. We introduce an associated computational complexity class termed bounded-error Lorentz quantum polynomial-time (BLQP), demonstrating its equivalence to the complexity class ${\text P}{\sharp \text{P}}$. We present LQC algorithms that efficiently solve the problem of maximum independent set, PP (probabilistic polynomial-time), and consequently ${\text P}{\sharp \text{P}}$, all within polynomial time. Additionally, we show that the quantum computing with postselection proposed by Aaronson can be efficiently simulated by LQC, but not vice versa.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. S. Arora and B. Barak,  Computational Complexity: A Modern Approach (Cambridge University Press, 2009).
  2. C. H. Papadimitriou, Computational Complexity (Addison-Wesley, 1994).
  3. W. He, Z. Wang, and B. Wu, Lorentz quantum computer, Chinese Physics B 32, 040304 (2023).
  4. B. Wu and Q. Niu, Superfluidity of bose-einstein condensate in an optical lattice: Landau-zener tunnelling and dynamical instability, New Journal of Physics 5, 104 (2003).
  5. Q. Zhang and B. Wu, Lorentz quantum mechanics, New Journal of Physics 20, 013024 (2018).
  6. W. Pauli, On dirac’s new method of field quantization, Reviews of Modern Physics 15, 175 (1943).
  7. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Physical Review Letters 79, 325 (1997).
  8. M. A. Nielson and I. L. Chuang, Quantum computing and quantum information (Cambridge University Press, Cambridge, 2000).
  9. J. Bognar,  Indefinite inner product space (Springer-Verlag, New York, 1974).
  10. M. Xiao and H. Nagamochi, Exact algorithms for maximum independent sets, Information and Computation 255, 126 (2017).
  11. J. Hastad, Clique is hard to approximate within n1−ε, Acta Mathematica 182, 105 (1999).
  12. A. Coja-Oghlan and C. Efthymiou, On independent sets in random graphs, Random Structures & Algorithms 47, 436 (2015).
  13. A. Frieze, On the independence number of random graphs, Discrete Mathematics 81, 171 (1990).
  14. H. Yu, F. Wilczek, and B. Wu, Quantum algorithm for approximating maximum independent sets, Chinese Physics Letters 38, 030304 (2021).
  15. B. Wu, H. Yu, and F. Wilczek, Quantum independent-set problem and non-abelian adiabatic mixing, Physical Review A 101, 012318 (2020).
  16. S. R. Buss and L. Hay, On truth-table reducibility to sat, Information and Computation 91, 86 (1991).
  17. L. Hemachandra, The strong exponential hierarchy collapses, Journal of Computer and System Sciences 39, 299 (1989).
  18. http://www.complexityzoo.com.
  19. S. Toda, Pp is as hard as the polynomial-time hierarchy, SIAM Journal on Computing 20, 865 (1991).
  20. E. Bernstein and U. Vazirani, Quantum complexity theory,  SIAM Journal on Computing 26, 1411 (1997).
  21. K. Rudinger et al., Characterizing mid-circuit measurements on a superconducting qubit using gate set tomography,  arXiv/2103.03008 .
  22. M. A. Norcia et al., Midcircuit qubit measurement and rearrangement in a 171yb atomic array,  Physical Review X 13, 041034 (2023).
  23. O. A. Cross,  Topics in Quantum Computing (O. A. Cross., 2012).

Summary

We haven't generated a summary for this paper yet.