Conformal Symmetry in Quantum Gravity (2403.04056v1)
Abstract: We study the problem of how to derive conformal symmetry in the framework of quantum gravity. We start with a generic gravitational theory which is invariant under both the general coordinate transformation (GCT) and Weyl transformation (or equivalently, local scale transformation), and then construct its BRST formalism by fixing the gauge symmetries by the extended de Donder gauge and scalar gauge conditions. These gauge-fixing conditions are invariant under global $GL(4)$ and global scale transformations. The gauge-fixed and BRST invariant quantum action possesses a huge Poincar\'e-like $IOSp(10|10)$ global symmetry, from which we can construct an extended conformal symmetry in a flat Minkowski background in the sense that the Lorentz symmetry is replaced with the $GL(4)$ symmetry. Moreover, we construct the conventional conformal symmetry out of this extended symmetry. With a flat Minkowski background $\langle g_{\mu\nu} \rangle = \eta_{\mu\nu}$ and a non-zero scalar field $\langle \phi \rangle \neq 0$, the $GL(4)$ and global scale symmetries are spontaneously broken to the Lorentz symmetry, thereby proving that the graviton and the dilaton are respectively the corresponding Nambu-Goldstone bosons, and therefore they must be exactly massless at nonperturbative level. One of remarkable aspects in our findings is that in quantum gravity, a derivation of conformal symmetry does not depend on a classical action, and its generators are built from only the gauge-fixing and the FP ghost actions. Finally, we address a generalized Zumino theorem in quantum gravity.
- C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation”, W H Freeman and Co (Sd), 1973.
- T. Banks and N. Seiberg, “Symmetries and Strings in Field Theory and Gravity”, Phys. Rev. D 83 (2011) 084019.
- T. Kugo and I. Ojima, “Local Covariant Operator Formalism of Nonabelian Gauge Theories and Quark Confinement Problem”, Prog. Theor. Phys. Suppl. 66 (1979) 1.
- M. E. Peskin, “Introduction to String and Superstring Theory II, in From the Planck Scale to the Weak Scale”, TASI 1986, ed. by H. E. Haber, World Scientific (1987) 277.
- D. J. Gross and J. Wess, “Scale Invariance, Conformal Invariance, and the High-Energy Behavior of Scattering Amplitudes”, Phys. Rev. D 2 (1970) 753, and references therein.
- Y. Nakayama, “Scale Invariance Vs Conformal Invariance”, Phys. Rept. 569 (2015) 1, and references therein.
- B. Zumino, “Effective Lagrangian and Broken Symmetries”, Lectures on Elementary Particles and Quantum Field Theory v.2, Cambridge, Brandeis Univ., pp. 437-500, 1970.
- I. Oda, “Quantum Scale Invariant Gravity in de Donder Gauge”, Phys. Rev. D 105 (2022) 066001.
- I. Oda, “Quantum Theory of Weyl Invariant Scalar-tensor Gravity”, Phys. Rev. D 105 (2022) 120618.
- I. Oda and P. Saake, “BRST Formalism of Weyl Conformal Gravity”, Phys. Rev. D 106 (2022) 106007.
- I. Oda and M. Ohta, “Quantum Conformal Gravity”, JHEP 02 (2024) 213.
- N. Nakanishi and I. Ojima, “Covariant Operator Formalism of Gauge Theories and Quantum Gravity”, World Scientific Publishing, 1990 and references therein.
- N. Nakanishi, “Indefinite Metric Quantum Field Theory of General Gravity”, Prog. Theor. Phys. 59 (1978) 972.
- T. Kugo, “Noether Currents and Maxwell-type Equations of Motion in Higher Derivative Gravity Theories”, Symmetry 13 (2021) 1408.
- R. Jackiw and S-Y. Pi, “Fake Conformal Symmetry in Conformal Cosmological Models”, Phys. Rev. D 91 (2015) 067501.
- M. Campigotto and L. Fatibene, “Gauge Natural Formulation of Conformal Gravity”, Ann. Phys. 354 (2015) 328.
- I. Oda, “Fake Conformal Symmetry in Unimodular Gravity”, Phys. Rev. D 94 (2016) 044032.
- I. Oda, “Classical Weyl Transverse Gravity”, Eur. Phys. J. C 77 (2017) 284.
- A. Alonso-Serrano, L. J. Garay and M. Liška, “Noether Charge Formalism for Weyl Transverse Gravity”, Class. Quant. Grav. 40 (2023) 025012.
- I. Oda, “Vanishing Noether Current in Weyl Invariant Gravities”, Int. J. Mod. Phys. A 37 (2022) 2250213.
- R. Ferrari and L. E. Picasso, “Spontaneous Breakdown in Quantum Electrodynamics”, Nucl. Phys. B 31 (1971) 316.
- I. Oda, “Restricted Weyl Symmetry”, Phys. Rev. D 102 (2020) 045008.
- A. Kamimura and I. Oda, “Quadratic Gravity and Restricted Weyl Symmetry”, Mod. Phys. Lett. A 36 (2021) 2150139.
- I. Oda, “Restricted Weyl Symmetry and Spontaneous Symmetry Breakdown of Conformal Symmetry”, Mod. Phys. Lett. A 36 (2021) 2150203.
- K. Kobayashi and T. Uematsu, “Non-linear Realization of Superconformal Symmetry”, Nucl. Phys. B 263 (1986) 309 and references therein.
- S. Kawasaki, T. Kimura and K. Kitago, “Canonical Quantum Theory of Gravitational Field with Higher Derivatives”, Prog. Theor. Phys. 66 (1981) 2085.
- S. Kawasaki and T. Kimura, “Canonical Quantum Theory of Gravitational Field with Higher Derivatives. II”, Prog. Theor. Phys. 68 (1982) 1749.
- S. Kawasaki and T. Kimura, “Canonical Quantum Theory of Gravitational Field with Higher Derivatives. III”, Prog. Theor. Phys. 69 (1983) 1015.
- J. Kubo and J. Kuntz, “Analysis of Unitarity in Conformal Quantum Gravity”, Class. Quant. Grav. 39 (2022) 175010.
- J. Kubo and J. Kuntz, “Spontaneous Conformal Symmetry Breaking and Quantum Quadratic Gravity”, Phys. Rev. D 106 (2022) 126015.
- M. J. Duff, “Twenty Years of the Weyl Anomaly”, Class. Quant. Grav. 11 (1994) 1387.
- F. Englert, C. Truffin and R. Gastmans, “Conformal Invariance in Quantum Gravity”, Nucl. Phys. B 117 (1976) 407.
- S. Kawasaki and T. Kimura, “A Possible Mechanism of Ghost Confinement in a Renormalizable Quantum Gravity”, Prog. Theor. Phys. 65 (1981) 1767.