Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A likelihood framework for cryogenic scintillating calorimeters used in the CRESST dark matter search (2403.03824v2)

Published 6 Mar 2024 in astro-ph.CO and astro-ph.IM

Abstract: Cryogenic scintillating calorimeters are ultrasensitive particle detectors for rare event searches, particularly for the search for dark matter and the measurement of neutrino properties. These detectors are made from scintillating target crystals generating two signals for each particle interaction. The phonon (heat) signal precisely measures the deposited energy independent of the type of interacting particle. The scintillation light signal yields particle discrimination on an event-by-event basis. This paper presents a likelihood framework modeling backgrounds and a potential dark matter signal in the two-dimensional plane spanned by phonon and scintillation light energies. We apply the framework to data from CaWO$_4$-based detectors operated in the CRESST dark matter search. For the first time, a single likelihood framework is used in CRESST to model the data and extract results on dark matter in one step by using a profile likelihood ratio test. Our framework simultaneously fits (neutron) calibration data and physics (background) data and allows combining data from multiple detectors. Although tailored to CaWO$_4$-targets and the CRESST experiment, the framework can easily be expanded to other materials and experiments using scintillating cryogenic calorimeters for dark matter search and neutrino physics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. “Planck 2018 results - VI. Cosmological parameters” Publisher: EDP Sciences In A&A 641, 2020, pp. A6 DOI: 10.1051/0004-6361/201833910
  2. “First results from the CRESST-III low-mass dark matter program” In Phys. Rev. D 100.10, 2019, pp. 102002 DOI: 10.1103/PhysRevD.100.102002
  3. “Recommended conventions for reporting results from direct dark matter searches” In Eur. Phys. J. C 81.10, 2021, pp. 907 DOI: 10.1140/epjc/s10052-021-09655-y
  4. “Results from 730 kg days of the CRESST-II Dark Matter search” In Eur. Phys. J. C 72.4, 2012, pp. 1–22 DOI: 10.1140/epjc/s10052-012-1971-8
  5. “The COSINUS project: perspectives of a NaI scintillating calorimeter for dark matter search” In Eur. Phys. J. C 76.8, 2016, pp. 441 DOI: 10.1140/epjc/s10052-016-4278-3
  6. “Gram-scale cryogenic calorimeters for rare-event searches” In Phys. Rev. D 96.2, 2017, pp. 022009 DOI: 10.1103/PhysRevD.96.022009
  7. “Results on low mass WIMPs using an upgraded CRESST-II detector” In Eur. Phys. J. C 74.12, 2014, pp. 1–6 DOI: 10.1140/epjc/s10052-014-3184-9
  8. “Results on light dark matter particles with a low-threshold CRESST-II detector” In Eur. Phys. J. C 76.1, 2016, pp. 1–8 DOI: 10.1140/epjc/s10052-016-3877-3
  9. Florian Reindl “Exploring Light Dark Matter With CRESST-II Low-Threshold Detectors”, 2016 URL: http://mediatum.ub.tum.de/?id=1294132
  10. “Scintillator Non-Proportionality and Gamma Quenching in CaWO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, 2009 DOI: 10.48550/arXiv.0910.4414
  11. Jens Schmaler “The CRESST Dark Matter Search - New Analysis Methods and Recent Results” München: Dr. Hut, 2010 URL: https://mediatum.ub.tum.de/node?id=998304
  12. “Energy-dependent light quenching in CaWO44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT crystals at mK temperatures” In Eur. Phys. J. C 74.7, 2014, pp. 1–6 DOI: 10.1140/epjc/s10052-014-2957-5
  13. “Geant4-based electromagnetic background model for the CRESST dark matter experiment” [Erratum: Eur. Phys. J. C, vol. 79, no. 12, p. 987, 2019. Doi: 10.1140/epjc/s10052-019-7504-y] In Eur. Phys. J. C 79.10, 2019, pp. 881 DOI: 10.1140/epjc/s10052-019-7385-0
  14. “High-Dimensional Bayesian Likelihood Normalisation for CRESST’s Background Model” submitted to CSBS, 2023 DOI: 10.48550/arXiv.2307.12991
  15. “Topographic prominence” Page Version ID: 1089562329 In Wikipedia, 2022 URL: https://en.wikipedia.org/w/index.php?title=Topographic_prominence&oldid=1089562329
  16. Jan Tungli “Findpeaks.jl” original-date: 2018-03-04T08:26:35Z, 2022 URL: https://github.com/tungli/Findpeaks.jl
  17. A. Akkerman, M. Murat and J. Barak “Delta-electron spectra, inelastic cross sections, and stopping powers of ions in silicon: Comparison between different models” In Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 321, 2014, pp. 1–7 DOI: 10.1016/j.nimb.2013.12.002
  18. G Heusser “Low-Radioactivity Background Techniques” Publisher: Annual Reviews In Annu. Rev. Nucl. Part. Sci. 45.1, 1995, pp. 543–590 DOI: 10.1146/annurev.ns.45.120195.002551
  19. Alexander Fuß “Simulation based Neutron Background Studies for the CRESST and COSINUS Dark Matter Search Experiments” TU Wien, 2022 DOI: 10.34726/HSS.2022.86617
  20. “EXCESS workshop: Descriptions of rising low-energy spectra” In SciPost Physics Proceedings, 2022, pp. 001 DOI: 10.21468/SciPostPhysProc.9.001
  21. “Latest observations on the low energy excess in CRESST-III” In SciPost Phys. Proc., 2023, pp. 013 DOI: 10.21468/SciPostPhysProc.12.013
  22. “EXCESS Workshop” In Indico, 2021 URL: https://indico.cern.ch/event/1013203/
  23. “EXCESS2022 Workshop (15-17 February 2022) · Indico@KIT (Indico)” In Indico@KIT (Indico), 2022 URL: https://indico.scc.kit.edu/event/2575/
  24. “EXCESS22@IDM” In Indico, 2022 URL: https://indico.cern.ch/event/1117540/
  25. F. Donato, N. Fornengo and S. Scopel “Effects of galactic dark halo rotation on WIMP direct detection” In Astropart. Phys. 9.3, 1998, pp. 247–260 DOI: 10.1016/S0927-6505(98)00025-5
  26. Gintaras Dūda, Ann Kemper and Paolo Gondolo “Model-independent form factors for spin-independent neutralino–nucleon scattering from elastic electron scattering data” In J. Cosmol. Astropart. Phys. 2007.04, 2007, pp. 012 DOI: 10.1088/1475-7516/2007/04/012
  27. Richard H. Helm “Inelastic and Elastic Scattering of 187-Mev Electrons from Selected Even-Even Nuclei” In Phys. Rev. 104.5, 1956, pp. 1466–1475 DOI: 10.1103/PhysRev.104.1466
  28. “Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil” In Astropart. Phys. 6.1, 1996, pp. 87–112 DOI: 10.1016/S0927-6505(96)00047-3
  29. Roger Barlow “Extended maximum likelihood” In Nucl. Instrum. Methods Phys. Res. A 297.3, 1990, pp. 496–506 DOI: 10.1016/0168-9002(90)91334-8
  30. “Asymptotic formulae for likelihood-based tests of new physics” In Eur. Phys. J. C 71.2, 2011, pp. 1–19 DOI: 10.1140/epjc/s10052-011-1554-0
  31. S.S. Wilks “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses” In Ann. Math. Statist. 9.1, 1938, pp. 60–62 DOI: 10.1214/aoms/1177732360
  32. S. Yellin “Finding an upper limit in the presence of an unknown background” In Phys. Rev. D 66.3, 2002, pp. 032005 DOI: 10.1103/PhysRevD.66.032005
  33. Patrick Kofod Mogensen and Asbjørn Nilsen Riseth “Optim: A mathematical optimization package for Julia” In Journal of Open Source Software 3.24, 2018, pp. 615 DOI: 10.21105/joss.00615
  34. Robert Feldt “BlackBoxOptim.jl” In GitHub repository GitHub, https://github.com/robertfeldt/BlackBoxOptim.jl, 2018
  35. “Differential Evolution –A Simple and Efficient Heuristic for global Optimization over Continuous Spaces” In Journal of Global Optimization 11.4, 1997, pp. 341–359 DOI: 10.1023/A:1008202821328
  36. “Adaptive particle swarm optimization” In IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.6 IEEE, 2009, pp. 1362–1381 DOI: 10.1109/TSMCB.2009.2015956
  37. John A Nelder and Roger Mead “A simplex method for function minimization” In The computer journal 7.4 Oxford University Press, 1965, pp. 308–313 DOI: 10.1093/comjnl/7.4.308
  38. “Implementing the Nelder-Mead simplex algorithm with adaptive parameters” In Computational Optimization and Applications 51.1 Springer, 2012, pp. 259–277 DOI: 10.1007/s10589-010-9329-3
  39. F. James “MINUIT: Function Minimization and Error Analysis Reference Manual” CERN Program Library Long Writeups In CERN Document Server, 1998 URL: https://cds.cern.ch/record/2296388
  40. William W. Hager and Hongchao Zhang “Algorithm 851: CG_DESCENT, a Conjugate Gradient Method with Guaranteed Descent” In ACM Trans. Math. Softw. 32.1 New York, NY, USA: Association for Computing Machinery, 2006, pp. 113–137 DOI: 10.1145/1132973.1132979
  41. William L. Goffe “SIMANN: A Global Optimization Algorithm using Simulated Annealing” In Studies in Nonlinear Dynamics & Econometrics 1.3, 1996 DOI: doi:10.2202/1558-3708.1020
  42. “Natural Evolution Strategies”, 2011 DOI: 10.48550/arXiv.1106.4487
  43. Tamara G. Kolda, Robert Michael Lewis and Virginia Torczon “Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods” In SIAM Review 45.3, 2003, pp. 385–482 DOI: 10.1137/S003614450242889
  44. “The Julia Programming Language”, 2022 URL: https://julialang.org/
  45. “ROOT — An object oriented data analysis framework” In Nucl. Inst. & Meth. in Phys. Res. A 389.1, New Computing Techniques in Physics Research V, 1997, pp. 81–86 DOI: 10.1016/S0168-9002(97)00048-X
Citations (4)

Summary

We haven't generated a summary for this paper yet.