Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Structure of Hamiltonian Graphs with Small Independence Number (2403.03668v1)

Published 6 Mar 2024 in math.CO and cs.CC

Abstract: A Hamiltonian path (cycle) in a graph is a path (cycle, respectively) which passes through all of its vertices. The problems of deciding the existence of a Hamiltonian cycle (path) in an input graph are well known to be NP-complete, and restricted classes of graphs which allow for their polynomial-time solutions are intensively investigated. Until very recently the complexity was open even for graphs of independence number at most 3. So far unpublished result of Jedli\v{c}kov\'{a} and Kratochv\'{\i}l [arXiv:2309.09228] shows that for every integer $k$, Hamiltonian path and cycle are polynomial-time solvable in graphs of independence number bounded by $k$. As a companion structural result, we determine explicit obstacles for the existence of a Hamiltonian path for small values of $k$, namely for graphs of independence number 2, 3, and 4. Identifying these obstacles in an input graph yields alternative polynomial-time algorithms for Hamiltonian path and cycle with no large hidden multiplicative constants.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.