Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Safety-Critical Control for Systems with Sporadic Measurements and Dwell Time Constraints (2403.03663v3)

Published 6 Mar 2024 in eess.SY, cs.SY, and math.OC

Abstract: This paper presents extensions of control barrier function (CBF) theory to systems with disturbances wherein a controller only receives measurements infrequently and operates open-loop between measurements, while still satisfying state constraints. The paper considers both impulsive and continuous actuators, and models the actuators, measurements, disturbances, and timing constraints as a hybrid dynamical system. We then design an open-loop observer that bounds the worst-case uncertainty between measurements. We develop definitions of CBFs for both actuation cases, and corresponding conditions on the control input to guarantee satisfaction of the state constraints. We apply these conditions to simulations of a satellite rendezvous in an elliptical orbit and autonomous orbit stationkeeping.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th European Control Conference, 2019, pp. 3420–3431.
  2. J. Breeden and D. Panagou, “Safety-critical control for systems with impulsive actuators and dwell time constraints,” IEEE Control Systems Letters, vol. 7, pp. 2119–2124, 2023.
  3. M. Brentari, S. Urbina, D. Arzelier, C. Louembet, and L. Zaccarian, “A hybrid control framework for impulsive control of satellite rendezvous,” IEEE Trans. on Contr. Syst. Tech., vol. 27, no. 4, pp. 1537–1551, 2019.
  4. M. Leomanni, G. Bianchini, A. Garulli, R. Quartullo, and F. Scortecci, “Optimal low-thrust orbit transfers made easy: A direct approach,” Journal of Spacecraft and Rockets, vol. 58, no. 6, pp. 1904–1914, 2021.
  5. J.-P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube, “Impulse differential inclusions: a viability approach to hybrid systems,” IEEE Trans. Autom. Control, vol. 47, no. 1, pp. 2–20, 2002.
  6. M. Maghenem and R. G. Sanfelice, “Sufficient conditions for forward invariance and contractivity in hybrid inclusions using barrier functions,” Automatica, vol. 124, p. 109328, 2021.
  7. M. Marley, R. Skjetne, and A. R. Teel, “Synergistic control barrier functions with application to obstacle avoidance for nonholonomic vehicles,” in Proc. Amer. Control Conf., 2021, pp. 243–249.
  8. J. Chai and R. G. Sanfelice, “Forward invariance of sets for hybrid dynamical systems (part ii),” IEEE Trans. Autom. Control, vol. 66, no. 1, pp. 89–104, 2021.
  9. P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier functions with applications to provably safe and composable collision avoidance for robotic systems,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1303–1310, 2019.
  10. J. Breeden, K. Garg, and D. Panagou, “Control barrier functions in sampled-data systems,” IEEE Contr. Sys. Lett., vol. 6, pp. 367–372, 2022.
  11. W. Shaw Cortez, D. Oetomo, C. Manzie, and P. Choong, “Control barrier functions for mechanical systems: Theory and application to robotic grasping,” IEEE Trans. Control Syst. Technol., pp. 1–16, 2019.
  12. G. Yang, C. Belta, and R. Tron, “Self-triggered control for safety critical systems using control barrier functions,” in Proc. Amer. Control Conf., 2019, pp. 4454–4459.
  13. L. Long and J. Wang, “Safety-critical dynamic event-triggered control of nonlinear systems,” Syst. & Contr. Letters, vol. 162, p. 105176, 2022.
  14. G. Ramsey, J. Chapel, M. Crews, D. Freesland, and A. Krimchansky, “Global positioning system constellation modernization impact on sidelobe capable gps receivers in geostationary orbit,” in 11th International ESA Conference on Guidance, Navigation & Control Systems, 2021.
  15. W. Becker, M. G. Bernhardt, and A. Jessner, “Autonomous spacecraft navigation with pulsars,” Acta Futura, vol. 7, pp. 11–28, 2013.
  16. R. K. Cosner, A. W. Singletary, A. J. Taylor, T. G. Molnar, K. L. Bouman, and A. D. Ames, “Measurement-robust control barrier functions: Certainty in safety with uncertainty in state,” in IEEE/RSJ International Conf. on Intelligent Robots and Systems, 2021, pp. 6286–6291.
  17. R. Takano and M. Yamakita, “Robust constrained stabilization control using control lyapunov and control barrier function in the presence of measurement noises,” in 2018 IEEE Conference on Control Technology and Applications, 2018, pp. 300–305.
  18. M. Vahs, C. Pek, and J. Tumova, “Belief control barrier functions for risk-aware control,” IEEE Robotics and Automation Letters, vol. 8, no. 12, pp. 8565–8572, 2023.
  19. Y. Wang and X. Xu, “Observer-based control barrier functions for safety critical systems,” in 2022 American Control Conf., 2022, pp. 709–714.
  20. D. R. Agrawal and D. Panagou, “Safe and robust observer-controller synthesis using control barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 127–132, 2023.
  21. Y. Zhang, S. Walters, and X. Xu, “Control barrier function meets interval analysis: Safety-critical control with measurement and actuation uncertainties,” in 2022 American Control Conf., 2022, pp. 3814–3819.
  22. J. Breeden and D. Panagou, “Predictive control barrier functions for online safety critical control,” in 2022 IEEE 61st Conference on Decision and Control, 2022, pp. 924–931.

Summary

We haven't generated a summary for this paper yet.