Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey on Applications of Reinforcement Learning in Spatial Resource Allocation (2403.03643v2)

Published 6 Mar 2024 in cs.LG and cs.AI

Abstract: The challenge of spatial resource allocation is pervasive across various domains such as transportation, industry, and daily life. As the scale of real-world issues continues to expand and demands for real-time solutions increase, traditional algorithms face significant computational pressures, struggling to achieve optimal efficiency and real-time capabilities. In recent years, with the escalating computational power of computers, the remarkable achievements of reinforcement learning in domains like Go and robotics have demonstrated its robust learning and sequential decision-making capabilities. Given these advancements, there has been a surge in novel methods employing reinforcement learning to tackle spatial resource allocation problems. These methods exhibit advantages such as rapid solution convergence and strong model generalization abilities, offering a new perspective on resolving spatial resource allocation problems. Therefore, this paper aims to summarize and review recent theoretical methods and applied research utilizing reinforcement learning to address spatial resource allocation problems. It provides a summary and comprehensive overview of its fundamental principles, related methodologies, and applied research. Additionally, it highlights several unresolved issues that urgently require attention in this direction for the future.

Summary

We haven't generated a summary for this paper yet.