Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reducing the runtime of fault-tolerant quantum simulations in chemistry through symmetry-compressed double factorization (2403.03502v1)

Published 6 Mar 2024 in quant-ph

Abstract: Quantum phase estimation based on qubitization is the state-of-the-art fault-tolerant quantum algorithm for computing ground-state energies in chemical applications. In this context, the 1-norm of the Hamiltonian plays a fundamental role in determining the total number of required iterations and also the overall computational cost. In this work, we introduce the symmetry-compressed double factorization (SCDF) approach, which combines a compressed double factorization of the Hamiltonian with the symmetry shift technique, significantly reducing the 1-norm value. The effectiveness of this approach is demonstrated numerically by considering various benchmark systems, including the FeMoco molecule, cytochrome P450, and hydrogen chains of different sizes. To compare the efficiency of SCDF to other methods in absolute terms, we estimate Toffoli gate requirements, which dominate the execution time on fault-tolerant quantum computers. For the systems considered here, SCDF leads to a sizeable reduction of the Toffoli gate count in comparison to other variants of double factorization or even tensor hypercontraction, which is usually regarded as the most efficient approach for qubitization.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Heifetz, A. Quantum mechanics in drug discovery; Springer, 2020
  2. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; others Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL materials 2013, 1
  3. Bluvstein, D.; Evered, S. J.; Geim, A. A.; Li, S. H.; Zhou, H.; Manovitz, T.; Ebadi, S.; Cain, M.; Kalinowski, M.; Hangleiter, D.; others Logical quantum processor based on reconfigurable atom arrays. Nature 2023, 1–3
  4. {https://newsroom.ibm.com/2023-12-04-IBM-Debuts-Next-Generation-Quantum-Processor-IBM-Quantum-System-Two,-Extends-Roadmap-to-Advance-Era-of-Quantum-Utility}
  5. {https://quantumai.google/qecmilestone}
  6. Low, G. H.; Kliuchnikov, V.; Schaeffer, L. Trading T-gates for dirty qubits in state preparation and unitary synthesis. arXiv preprint arXiv:1812.00954 2018,
  7. Oumarou, O.; Scheurer, M.; Parrish, R. M.; Hohenstein, E. G.; Gogolin, C. Accelerating Quantum Computations of Chemistry Through Regularized Compressed Double Factorization. arXiv preprint arXiv:2212.07957 2022,
  8. Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. Tensor hypercontraction density fitting. I. Quartic scaling second-and third-order Møller-Plesset perturbation theory. The Journal of chemical physics 2012, 137
  9. Parrish, R. M.; Hohenstein, E. G.; Martínez, T. J.; Sherrill, C. D. Tensor hypercontraction. II. Least-squares renormalization. The Journal of chemical physics 2012, 137
  10. Loaiza, I.; Marefat Khah, A.; Wiebe, N.; Izmaylov, A. F. Reducing molecular electronic hamiltonian simulation cost for linear combination of unitaries approaches. Quantum Science and Technology 2022,
  11. Jordan, P.; Wigner, E. On Paul’s prohibition on equivalence. Zeitschrift Physik 1928, 631–651
  12. Seeley, J. T.; Richard, M. J.; Love, P. J. The Bravyi-Kitaev transformation for quantum computation of electronic structure. The Journal of chemical physics 2012, 137
  13. Poulin, D.; Hastings, M. B.; Wecker, D.; Wiebe, N.; Doherty, A. C.; Troyer, M. The Trotter step size required for accurate quantum simulation of quantum chemistry. arXiv preprint arXiv:1406.4920 2014,
  14. Childs, A. M.; Wiebe, N. Hamiltonian simulation using linear combinations of unitary operations. arXiv preprint arXiv:1202.5822 2012,
  15. Hohenstein, E. G.; Sherrill, C. D. Density fitting of intramonomer correlation effects in symmetry-adapted perturbation theory. The Journal of chemical physics 2010, 133
  16. Loaiza, I.; Izmaylov, A. F. Reducing the molecular electronic Hamiltonian encoding costs on quantum computers by symmetry shifts. arXiv preprint arXiv:2304.13772 2023,
  17. Bradbury, J.; Frostig, R.; Hawkins, P.; Johnson, M. J.; Leary, C.; Maclaurin, D.; Necula, G.; Paszke, A.; VanderPlas, J.; Wanderman-Milne, S.; Zhang, Q. JAX: composable transformations of Python+NumPy programs. 2018; http://github.com/google/jax
  18. Li, Z.; Li, J.; Dattani, N. S.; Umrigar, C.; Chan, G. K. The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. The Journal of chemical physics 2019, 150
Citations (8)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com