Bath-induced interactions and transient dynamics in open quantum systems at strong coupling: Effective Hamiltonian approach (2403.03386v2)
Abstract: Understanding the dynamics of dissipative quantum systems, particularly beyond the weak coupling approximation, is central to various quantum applications. While numerically exact methods provide accurate solutions, they often lack the analytical insight provided by theoretical approaches. In this study, we employ the recently-developed method dubbed the effective Hamiltonian theory to understand the dynamics of system-bath configurations without resorting to a perturbative description of the system-bath coupling energy. Through a combination of mapping steps and truncation, the effective Hamiltonian theory offers both analytical insights into signatures of strong couplings in open quantum systems and a straightforward path for numerical simulations. To validate the accuracy of the method, we apply it to two canonical models: a single spin immersed in a bosonic bath and two noninteracting spins in a common bath. In both cases, we study the transient regime and the steady state limit at nonzero temperature, and spanning system-bath interactions from the weak to the strong regime. By comparing the results of the effective Hamiltonian theory with numerically exact simulations, we show that although the former overlooks non-Markovian features in the transient equilibration dynamics, it correctly captures non-perturbative bath-generated couplings between otherwise non-interacting spins as observed in their synchronization dynamics and correlations. Altogether, the effective Hamiltonian theory offers a powerful approach to understanding strong coupling dynamics and thermodynamics, capturing the signatures of such interactions in both relaxation dynamics and in the steady state limit.
- Toshiya Kinoshita, Trevor Wenger, and David S. Weiss, “A quantum Newton’s cradle,” Nature 440, 900–903 (2006).
- Stefan Trotzky, Yu-Ao Chen, Andreas Flesch, Ian P. McCulloch, Ulrich Schollwöck, Jens Eisert, and Immanuel Bloch, “Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas,” Nat. Phys. 8, 325–330 (2012).
- Adam M. Kaufman, M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko, Philipp M. Preiss, and Markus Greiner, “Quantum thermalization through entanglement in an isolated many-body system,” Science 353, 794–800 (2016).
- Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Probing many-body dynamics on a 51-atom quantum simulator,” Nature 551, 579–584 (2017).
- Yijun Tang, Wil Kao, Kuan-Yu Li, Sangwon Seo, Krishnanand Mallayya, Marcos Rigol, Sarang Gopalakrishnan, and Benjamin L. Lev, “Thermalization near integrability in a dipolar quantum newton’s cradle,” Phys. Rev. X 8, 021030 (2018).
- Paul Niklas Jepsen, Jesse Amato-Grill, Ivana Dimitrova, Wen Wei Ho, Eugene Demler, and Wolfgang Ketterle, “Spin transport in a tunable heisenberg model realized with ultracold atoms,” Nature 588, 403–407 (2020).
- J. R. Maze, P. L. Stanwix, J. S. Hodges, S. Hong, J. M. Taylor, P. Cappellaro, L. Jiang, M. V. Gurudev Dutt, E. Togan, A. S. Zibrov, A. Yacoby, R. L. Walsworth, and M. D. Lukin, “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature 455, 644–647 (2008).
- N. Bar-Gill, L. M. Pham, C. Belthangady, D. Le Sage, P. Cappellaro, J. R. Maze, M. D. Lukin, A. Yacoby, and R. Walsworth, “Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems,” Nat. Commun. 3, 858 (2012).
- John Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
- Hong-Guang Duan, Ajay Jha, Lipeng Chen, Vandana Tiwari, Richard J. Cogdell, Khuram Ashraf, Valentyn I. Prokhorenko, Michael Thorwart, and R. J. Dwayne Miller, “Quantum coherent energy transport in the fenna–matthews–olson complex at low temperature,” Proc. Nat. Acad. Sci. 119, e2212630119 (2022).
- Ronnie Kosloff and Amikam Levy, “Quantum heat engines and refrigerators: Continuous devices,” Annu. Rev. Phys. Chem. 65, 365–393 (2014).
- John Goold, Marcus Huber, Arnau Riera, Lídia del Rio, and Paul Skrzypczyk, “The role of quantum information in thermodynamics—a topical review,” J. Phys. A: Math. Theor. 49, 143001 (2016).
- Giuliano Benenti, Giulio Casati, Keiji Saito, and Robert S. Whitney, “Fundamental aspects of steady-state conversion of heat to work at the nanoscale,” Phys. Rep. 694, 1 – 124 (2017).
- Mark T. Mitchison, “Quantum thermal absorption machines: refrigerators, engines and clocks,” Contemp. Phys. 60, 164–187 (2019).
- Martin Josefsson, Artis Svilans, Adam M. Burke, Eric A. Hoffmann, Sofia Fahlvik, Claes Thelander, Martin Leijnse, and Heiner Linke, “A quantum-dot heat engine operating close to the thermodynamic efficiency limits,” Nat. Nanotechnol. 13, 920–924 (2018).
- Alberto Ronzani, Bayan Karimi, Jorden Senior, Yu-Cheng Chang, Joonas T. Peltonen, ChiiDong Chen, and Jukka P. Pekola, “Tunable photonic heat transport in a quantum heat valve,” Nature Phys. 14, 991–995 (2018).
- Nico Mosso, Hatef Sadeghi, Andrea Gemma, Sara Sangtarash, Ute Drechsler, Colin Lambert, and Bernd Gotsmann, “Thermal transport through single-molecule junctions,” Nano Lett. 19, 7614–7622 (2019).
- Francisco J. Garcia-Vidal, Cristiano Ciuti, and Thomas W. Ebbesen, “Manipulating matter by strong coupling to vacuum fields,” Science 373, eabd0336 (2021).
- Hannes Hübener, Umberto De Giovannini, Christian Schäfer, Johan Andberger, Michael Ruggenthaler, Jerome Faist, and Angel Rubio, “Engineering quantum materials with chiral optical cavities,” Nat. Mater. 20, 438–442 (2021).
- John Clai Owens, Margaret G. Panetta, Brendan Saxberg, Gabrielle Roberts, Srivatsan Chakram, Ruichao Ma, Andrei Vrajitoarea, Jonathan Simon, and David I. Schuster, “Chiral cavity quantum electrodynamics,” Nat. Phys. 18, eabd0336 (2022).
- F. Schlawin, D. M. Kennes, and M. A. Sentef, “Cavity quantum materials,” Appl. Phys. Rev. 9, 011312 (2022).
- Jacqueline Bloch, Andrea Cavalleri, Victor Galitski, Mohammad Hafezi, and Angel Rubio, “Strongly correlated electron–photon systems,” Nature 606 (2022).
- Javier Galego, Francisco J. Garcia-Vidal, and Johannes Feist, “Cavity-induced modifications of molecular structure in the strong-coupling regime,” Phys. Rev. X 5, 041022 (2015).
- Felipe Herrera and Frank C. Spano, “Cavity-controlled chemistry in molecular ensembles,” Phys. Rev. Lett. 116, 238301 (2016).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2007).
- Philipp Strasberg, “Operational approach to quantum stochastic thermodynamics,” Phys. Rev. E 100, 022127 (2019).
- J. D. Cresser and J. Anders, “Weak and ultrastrong coupling limits of the quantum mean force gibbs state,” Phys. Rev. Lett. 127, 250601 (2021).
- Nicholas Anto-Sztrikacs, Ahsan Nazir, and Dvira Segal, “Effective-hamiltonian theory of open quantum systems at strong coupling,” PRX Quantum 4, 020307 (2023a).
- Nancy Makri, “Numerical path integral techniques for long time dynamics of quantum dissipative systems,” J. Math. Phys. 36, 2430–2457 (1995).
- Michael Kilgour, Bijay Kumar Agarwalla, and Dvira Segal, “Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach,” J. Chem. Phys. 150, 084111 (2019).
- Sohang Kundu and Nancy Makri, ‘‘PathSum: A C++ and Fortran suite of fully quantum mechanical real-time path integral methods for (multi-)system + bath dynamics,” J. Chem. Phys. 158, 224801 (2023).
- A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B. W. Lovett, “Efficient non-markovian quantum dynamics using time-evolving matrix product operators,” Nat. Commun. 9, 3322 (2018).
- Dominic Gribben, Aidan Strathearn, Jake Iles-Smith, Dainius Kilda, Ahsan Nazir, Brendon W. Lovett, and Peter Kirton, “Exact quantum dynamics in structured environments,” Phys. Rev. Res. 2, 013265 (2020).
- Yoshitaka Tanimura, “Numerically “exact” approach to open quantum dynamics: The hierarchical equations of motion (HEOM),” J. Chem. Phys. 153, 020901 (2020).
- Neill Lambert, Tarun Raheja, Simon Cross, Paul Menczel, Shahnawaz Ahmed, Alexander Pitchford, Daniel Burgarth, and Franco Nori, “Qutip-bofin: A bosonic and fermionic numerical hierarchical-equations-of-motion library with applications in light-harvesting, quantum control, and single-molecule electronics,” Phys. Rev. Res. 5, 013181 (2023).
- A. Erpenbeck, E. Gull, and G. Cohen, “Quantum monte carlo method in the steady state,” Phys. Rev. Lett. 130, 186301 (2023).
- R. Härtle, G. Cohen, D. R. Reichman, and A. J. Millis, “Transport through an anderson impurity: Current ringing, nonlinear magnetization, and a direct comparison of continuous-time quantum monte carlo and hierarchical quantum master equations,” Phys. Rev. B 92, 085430 (2015).
- Guy Cohen, Emanuel Gull, David R. Reichman, and Andrew J. Millis, “Taming the dynamical sign problem in real-time evolution of quantum many-body problems,” Phys. Rev. Lett. 115, 266802 (2015).
- Di Luo, Zhuo Chen, Juan Carrasquilla, and Bryan K. Clark, “Autoregressive neural network for simulating open quantum systems via a probabilistic formulation,” Phys. Rev. Lett. 128, 090501 (2022).
- Javier Prior, Alex W. Chin, Susana F. Huelga, and Martin B. Plenio, “Efficient simulation of strong system-environment interactions,” Phys. Rev. Lett. 105, 050404 (2010).
- Marlon Brenes, Juan José Mendoza-Arenas, Archak Purkayastha, Mark T. Mitchison, Stephen R. Clark, and John Goold, “Tensor-network method to simulate strongly interacting quantum thermal machines,” Phys. Rev. X 10, 031040 (2020).
- Moritz Cygorek, Michael Cosacchi, Alexei Vagov, Vollrath Martin Axt, Brendon W. Lovett, Jonathan Keeling, and Erik M. Gauger, “Simulation of open quantum systems by automated compression of arbitrary environments,” Nat. Phys. 18, 662–668 (2022).
- Qiang Shi and Eitan Geva, “A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling,” J. Chem. Phys. 119, 12063–12076 (2003).
- Ming-Liang Zhang, Being J. Ka, and Eitan Geva, “Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation,” J. Chem. Phys. 125, 044106 (2006).
- Aaron Kelly, Andrés Montoya-Castillo, Lu Wang, and Thomas E. Markland, “Generalized quantum master equations in and out of equilibrium: When can one win?” J. Chem. Phys. 144, 184105 (2016).
- M. P. Woods, R. Groux, A. W. Chin, S. F. Huelga, and M. B. Plenio, “Mappings of open quantum systems onto chain representations and Markovian embeddings,” J. Math. Phys. 55, 032101 (2014).
- Alex W. Chin, Angel Rivas, Susana F. Huelga, and Martin B. Plenio, “Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials,” J. Math. Phys. 51, 092109 (2010).
- A. Imamoglu, “Stochastic wave-function approach to non-Markovian systems,” Phys. Rev. A 50, 3650–3653 (1994).
- B. M. Garraway, “Nonperturbative decay of an atomic system in a cavity,” Phys. Rev. A 55, 2290–2303 (1997a).
- B. M. Garraway, “Decay of an atom coupled strongly to a reservoir,” Phys. Rev. A 55, 4636–4639 (1997b).
- Paul Menczel, Ken Funo, Mauro Cirio, Neill Lambert, and Franco Nori, “Non-hermitian pseudomodes for strongly coupled open quantum systems: Unravelings, correlations and thermodynamics,” arXiv:2401.11830 (2024).
- Nicholas Anto-Sztrikacs, Brett Min, Marlon Brenes, and Dvira Segal, “Effective hamiltonian theory: An approximation to the equilibrium state of open quantum systems,” Phys. Rev. B 108, 115437 (2023b).
- Brett Min, Nicholas Anto-Sztrikacs, Marlon Brenes, and Dvira Segal, “Bath-engineering magnetic order in quantum spin chains: An analytic mapping approach,” arXiv:2401.06227 (2023).
- Tianrui Deng, Yiying Yan, Lipeng Chen, and Yang Zhao, “Dynamics of the two-spin spin-boson model with a common bath,” J. Chem. Phys. 144, 144102 (2016).
- Minghui Xu, D. A. Tieri, E. C. Fine, James K. Thompson, and M. J. Holland, “Synchronization of two ensembles of atoms,” Phys. Rev. Lett. 113, 154101 (2014).
- G. L. Giorgi, F. Plastina, G. Francica, and R. Zambrini, “Spontaneous synchronization and quantum correlation dynamics of open spin systems,” Phys. Rev. A 88, 042115 (2013).
- Albert Cabot, Gian Luca Giorgi, Fernando Galve, and Roberta Zambrini, “Quantum synchronization in dimer atomic lattices,” Phys. Rev. Lett. 123, 023604 (2019).
- G. Karpat, İ. Yalç ınkaya, and B. Çakmak, “Quantum synchronization of few-body systems under collective dissipation,” Phys. Rev. A 101, 042121 (2020).
- Xing Xiao, Tian-Xiang Lu, Wo-Jun Zhong, and Yan-Ling Li, “Classical-driving-assisted quantum synchronization in non-markovian environments,” Phys. Rev. A 107, 022221 (2023).
- R. Martinazzo, B. Vacchini, K. H. Hughes, and I. Burghardt, “Communication: Universal Markovian reduction of Brownian particle dynamics,” J. Chem. Phys. 134, 011101 (2011).
- Jake Iles-Smith, Neill Lambert, and Ahsan Nazir, “Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems,” Phys. Rev. A 90, 032114 (2014).
- Jake Iles-Smith, Arend G. Dijkstra, Neill Lambert, and Ahsan Nazir, “Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations,” J. Chem. Phys. 144, 044110 (2016).
- Philipp Strasberg, Gernot Schaller, Neill Lambert, and Tobias Brandes, “Nonequilibrium thermodynamics in the strong coupling and non-markovian regime based on a reaction coordinate mapping,” New J. Phys. 18, 073007 (2016).
- Keith H. Hughes, Clara D. Christ, and Irene Burghardt, “Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. I. Application to single surface dynamics,” J. Chem. Phys. 131, 024109 (2009a).
- Keith H. Hughes, Clara D. Christ, and Irene Burghardt, “Effective-mode representation of non-Markovian dynamics: A hierarchical approximation of the spectral density. II. Application to environment-induced nonadiabatic dynamics,” J. Chem. Phys. 131, 124108 (2009b).
- Nicholas Anto-Sztrikacs and Dvira Segal, “Strong coupling effects in quantum thermal transport with the reaction coordinate method,” New J. Phys. 23, 063036 (2021).
- Luis A. Correa, Buqing Xu, Benjamin Morris, and Gerardo Adesso, “Pushing the limits of the reaction-coordinate mapping,” J. Chem. Phys. 151, 094107 (2019).
- Marlon Brenes and Dvira Segal, “Multispin probes for thermometry in the strong-coupling regime,” Phys. Rev. A 108, 032220 (2023).
- Nazim Boudjada and Dvira Segal, “From dissipative dynamics to studies of heat transfer at the nanoscale: Analysis of the spin-boson model,” J. Phys. Chem. A 118, 11323–11336 (2014).
- Karol Życzkowski, Paweł Horodecki, Anna Sanpera, and Maciej Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
- G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
- Shishir Khandelwal, Nicolas Palazzo, Nicolas Brunner, and Géraldine Haack, “Critical heat current for operating an entanglement engine,” New J. Phys. 22, 073039 (2020).
- Asher Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996).
- Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Phys. Lett. A 223, 1–8 (1996).
- P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,” Appl. Phys. Rev. 6, 021318 (2019).
- S. Barzanjeh, A. Xuereb, S. Gröblacher, M. Paternostro, C. A. Regal, and E. M Weig, “Optomechanics for quantum technologies,” Nat. Phys. 18, 15–24 (2022).
- Chee Kong Lee, Jeremy Moix, and Jianshu Cao, “Accuracy of second order perturbation theory in the polaron and variational polaron frames,” J. Chem. Phys. 136, 204120 (2012).
- Dazhi Xu and Jianshu Cao, “Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach,” Front. Phys. 11, 110308 (2016).
- J.R. Johansson, P.D. Nation, and Franco Nori, “Qutip: An open-source python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 183, 1760–1772 (2012).
- J.R. Johansson, P.D. Nation, and Franco Nori, “Qutip 2: A python framework for the dynamics of open quantum systems,” Comput. Phys. Commun. 184, 1234–1240 (2013).