Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Monotonicity of Information Aging (2403.03380v1)

Published 6 Mar 2024 in cs.IT, eess.SP, and math.IT

Abstract: In this paper, we analyze the monotonicity of information aging in a remote estimation system, where historical observations of a Gaussian autoregressive AR(p) process are used to predict its future values. We consider two widely used loss functions in estimation: (i) logarithmic loss function for maximum likelihood estimation and (ii) quadratic loss function for MMSE estimation. The estimation error of the AR(p) process is written as a generalized conditional entropy which has closed-form expressions. By using a new information-theoretic tool called $\epsilon$-Markov chain, we can evaluate the divergence of the AR(p) process from being a Markov chain. When the divergence $\epsilon$ is large, the estimation error of the AR(p) process can be far from a non-decreasing function of the Age of Information (AoI). Conversely, for small divergence $\epsilon$, the inference error is close to a non-decreasing AoI function. Each observation is a short sequence taken from the AR(p) process. As the observation sequence length increases, the parameter $\epsilon$ progressively reduces to zero, and hence the estimation error becomes a non-decreasing AoI function. These results underscore a connection between the monotonicity of information aging and the divergence of from being a Markov chain.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. X. Song and J. W.-S. Liu, “Performance of multiversion concurrency control algorithms in maintaining temporal consistency,” in IEEE Fourteenth Annual International Computer Software and Applications Conference, 1990, pp. 132–133.
  2. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in IEEE INFOCOM, 2012, pp. 2731–2735.
  3. R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and S. Ulukus, “Age of information: An introduction and survey,” IEEE J. Select. Areas in Commun., vol. 39, no. 5, pp. 1183–1210, 2021.
  4. Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff, “Update or wait: How to keep your data fresh,” IEEE Trans. Inf. Theory, vol. 63, no. 11, pp. 7492–7508, 2017.
  5. R. D. Yates, “Lazy is timely: Status updates by an energy harvesting source,” in IEEE ISIT, 2015, pp. 3008–3012.
  6. I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information in wireless networks with throughput constraints,” in IEEE INFOCOM, 2018, pp. 1844–1852.
  7. Y. Sun and B. Cyr, “Information aging through queues: A mutual information perspective,” in Proc. IEEE SPAWC Workshop, 2018.
  8. ——, “Sampling for data freshness optimization: Non-linear age functions,” J. Commun. Netw., vol. 21, no. 3, pp. 204–219, 2019.
  9. G. Chen, S. C. Liew, and Y. Shao, “Uncertainty-of-information scheduling: A restless multiarmed bandit framework,” IEEE Trans. Inf. Theory, vol. 68, no. 9, pp. 6151–6173, 2022.
  10. Z. Wang, M.-A. Badiu, and J. P. Coon, “A framework for characterizing the value of information in hidden markov models,” IEEE Trans. Inf. Theory, vol. 68, no. 8, pp. 5203–5216, 2022.
  11. T. Z. Ornee and Y. Sun, “Sampling and remote estimation for the Ornstein-Uhlenbeck process through queues: Age of information and beyond,” IEEE/ACM Trans. Netw., vol. 29, no. 5, pp. 1962–1975, 2021.
  12. V. Tripathi and E. Modiano, “A Whittle index approach to minimizing functions of age of information,” in IEEE Allerton, 2019, pp. 1160–1167.
  13. M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-penalty minimization for networked control systems with packet loss,” in IEEE INFOCOM Age of Information Workshop, 2019, pp. 189–196.
  14. A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Optimal sampling and scheduling for timely status updates in multi-source networks,” IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 4019–4034, 2021.
  15. J. Sun, Z. Jiang, B. Krishnamachari, S. Zhou, and Z. Niu, “Closed-form Whittle’s index-enabled random access for timely status update,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1538–1551, 2019.
  16. I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano, “Scheduling policies for minimizing age of information in broadcast wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6, pp. 2637–2650, 2018.
  17. T. Z. Ornee and Y. Sun, “A Whittle index policy for the remote estimation of multiple continuous Gauss-Markov processes over parallel channels,” ACM MobiHoc, 2023.
  18. J. Pan, Y. Sun, and N. B. Shroff, “Sampling for remote estimation of the Wiener process over an unreliable channel,” ACM Sigmetrics, 2023.
  19. Y. Sun and S. Kompella, “Age-optimal multi-flow status updating with errors: A sample-path approach,” J. Commun. Netw., vol. 25, no. 5, pp. 570–584, 2023.
  20. Y. Sun, Y. Polyanskiy, and E. Uysal, “Sampling of the Wiener process for remote estimation over a channel with random delay,” IEEE Trans. Inf. Theory, vol. 66, no. 2, pp. 1118–1135, 2020.
  21. V. Tripathi, L. Ballotta, L. Carlone, and E. Modiano, “Computation and communication co-design for real-time monitoring and control in multi-agent systems,” in IEEE WiOpt, 2021, pp. 1–8.
  22. M. K. C. Shisher, H. Qin, L. Yang, F. Yan, and Y. Sun, “The age of correlated features in supervised learning based forecasting,” in IEEE INFOCOM Age of Information Workshop, 2021.
  23. M. K. C. Shisher and Y. Sun, “How does data freshness affect real-time supervised learning?” ACM MobiHoc, 2022.
  24. M. K. C. Shisher, B. Ji, I.-H. Hou, and Y. Sun, “Learning and communications co-design for remote inference systems: Feature length selection and transmission scheduling,” IEEE J. Sel. Areas Inf. Theory, vol. 4, pp. 524–538, 2023.
  25. M. K. C. Shisher, Y. Sun, and I.-H. Hou, “Timely communications for remote inference,” submitted, 2023.
  26. T. Z. Ornee, M. K. C. Shisher, C. Kam, and Y. Sun, “Context-aware status updating: Wireless scheduling for maximizing situational awareness in safety-critical systems,” in IEEE MILCOM, 2023, pp. 194–200.
  27. C. Ari, M. K. C. Shisher, E. Uysal, and Y. Sun, “Goal-oriented communications for remote inference with two-way delay,” arXiv preprint arXiv:2311.11143, 2023.
  28. J. H. Stock and M. W. Watson, “Vector autoregressions,” Journal of Economic perspectives, vol. 15, no. 4, pp. 101–115, 2001.
  29. A. Isaksson, A. Wennberg, and L. H. Zetterberg, “Computer analysis of eeg signals with parametric models,” Proceedings of the IEEE, vol. 69, no. 4, pp. 451–461, 1981.
  30. J. P. Champati, M. H. Mamduhi, K. H. Johansson, and J. Gross, “Performance characterization using aoi in a single-loop networked control system,” in IEEE INFOCOM Age of Information Workshop, 2019, pp. 197–203.
  31. O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-information vs. value-of-information scheduling for cellular networked control systems,” in Proceedings of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, 2019, pp. 109–117.
  32. A. P. Dawid, “Coherent measures of discrepancy, uncertainty and dependence, with applications to Bayesian predictive experimental design,” Technical Report 139, 1998.
  33. F. Farnia and D. Tse, “A minimax approach to supervised learning,” NIPS, vol. 29, pp. 4240–4248, 2016.
  34. T. Soleymani, S. Hirche, and J. S. Baras, “Optimal self-driven sampling for estimation based on value of information,” in IEEE WODES, 2016, pp. 183–188.
  35. Y. Polyanskiy and Y. Wu, “Lecture notes on information theory,” Lecture Notes for MIT (6.441), UIUC (ECE 563), Yale (STAT 664), no. 2012-2017, 2014.
  36. P. D. Grünwald and A. P. Dawid, “Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory,” Annals of Statistics, vol. 32, no. 4, pp. 1367–1433, 08 2004.
Citations (4)

Summary

We haven't generated a summary for this paper yet.