Quantum refrigeration powered by noise in a superconducting circuit (2403.03373v1)
Abstract: While dephasing noise frequently presents obstacles for quantum devices, it can become an asset in the context of a Brownian-type quantum refrigerator. Here we demonstrate a novel quantum thermal machine that leverages noise-assisted quantum transport to fuel a cooling engine in steady state. The device exploits symmetry-selective couplings between a superconducting artificial molecule and two microwave waveguides. These waveguides act as thermal reservoirs of different temperatures, which we regulate by employing synthesized thermal fields. We inject dephasing noise through a third channel that is longitudinally coupled to an artificial atom of the molecule. By varying the relative temperatures of the reservoirs, and measuring heat currents with a resolution below 1 aW, we demonstrate that the device can be operated as a quantum heat engine, thermal accelerator, and refrigerator. Our findings open new avenues for investigating quantum thermodynamics using superconducting quantum machines coupled to thermal microwave waveguides.
- E. H. Lieb and J. Yngvason, Physics Reports 310, 1 (1999).
- M. Horodecki and J. Oppenheim, Nature Communications 4, 2059 (2013), number: 1 Publisher: Nature Publishing Group.
- N. Yunger Halpern and J. M. Renes, Physical Review E 93, 022126 (2016), publisher: American Physical Society.
- N. Y. Halpern, Journal of Physics A: Mathematical and Theoretical 51, 094001 (2018), publisher: IOP Publishing.
- M. Lostaglio, D. Jennings, and T. Rudolph, New Journal of Physics 19, 043008 (2017), publisher: IOP Publishing.
- C. Sparaciari, J. Oppenheim, and T. Fritz, Physical Review A 96, 052112 (2017), publisher: American Physical Society.
- A. A. S. Kalaee, A. Wacker, and P. P. Potts, Physical Review E 104, L012103 (2021), publisher: American Physical Society.
- M. Lostaglio, Physical Review Letters 125, 230603 (2020), publisher: American Physical Society.
- N. M. Myers and S. Deffner, Physical Review E 101, 012110 (2020), publisher: American Physical Society.
- N. Linden, S. Popescu, and P. Skrzypczyk, Physical Review Letters 105, 130401 (2010), publisher: American Physical Society.
- A. Levy and R. Kosloff, Physical Review Letters 108, 070604 (2012), publisher: American Physical Society.
- Y.-X. Chen and S.-W. Li, EPL (Europhysics Letters) 97, 40003 (2012).
- D. Venturelli, R. Fazio, and V. Giovannetti, Physical Review Letters 110, 256801 (2013), publisher: American Physical Society.
- R. Silva, P. Skrzypczyk, and N. Brunner, Physical Review E 92, 012136 (2015), publisher: American Physical Society.
- J.-Y. Du and F.-L. Zhang, New Journal of Physics 20, 063005 (2018), publisher: IOP Publishing.
- V. Holubec and T. Novotný, The Journal of Chemical Physics 151, 044108 (2019).
- M. T. Mitchison, Contemporary Physics 60, 164 (2019a), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00107514.2019.1631555.
- B. Bhandari and A. N. Jordan, Physical Review B 104, 075442 (2021), publisher: American Physical Society.
- M. W. AlMasri and M. R. B. Wahiddin, Reports on Mathematical Physics 89, 185 (2022).
- M. T. Mitchison, Contemporary Physics 60, 164 (2019b), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00107514.2019.1631555.
- H. E. D. Scovil and E. O. Schulz-DuBois, Physical Review Letters 2, 262 (1959), publisher: American Physical Society.
- J. E. Geusic, E. O. Schulz-DuBios, and H. E. D. Scovil, Physical Review 156, 343 (1967), publisher: American Physical Society.
- J. P. Palao, R. Kosloff, and J. M. Gordon, Physical Review E 64, 056130 (2001), publisher: American Physical Society.
- C. Van den Broeck and R. Kawai, Physical Review Letters 96, 210601 (2006), publisher: American Physical Society.
- J. P. Pekola and F. W. J. Hekking, Physical Review Letters 98, 210604 (2007), arXiv:cond-mat/0702233.
- J. Parrondo and B. de Cisneros, Applied Physics A 75, 179 (2002).
- P. Reimann, Physics Reports 361, 57 (2002).
- R. D. Astumian and P. Hänggi, Physics Today 55, 33 (2002).
- L. Chen, Z. Ding, and F. Sun, Applied Mathematical Modelling 35, 2945 (2011).
- R. Rehammar and S. Gasparinetti, IEEE Transactions on Microwave Theory and Techniques 10.1109/TMTT.2023.3238543 (2023), conference Name: IEEE Transactions on Microwave Theory and Techniques.
- M. F. Gely and G. A. Steele, New Journal of Physics 22, 013025 (2020), publisher: IOP Publishing.
- J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234 (2013).