Papers
Topics
Authors
Recent
2000 character limit reached

Quantum refrigeration powered by noise in a superconducting circuit

Published 5 Mar 2024 in quant-ph | (2403.03373v1)

Abstract: While dephasing noise frequently presents obstacles for quantum devices, it can become an asset in the context of a Brownian-type quantum refrigerator. Here we demonstrate a novel quantum thermal machine that leverages noise-assisted quantum transport to fuel a cooling engine in steady state. The device exploits symmetry-selective couplings between a superconducting artificial molecule and two microwave waveguides. These waveguides act as thermal reservoirs of different temperatures, which we regulate by employing synthesized thermal fields. We inject dephasing noise through a third channel that is longitudinally coupled to an artificial atom of the molecule. By varying the relative temperatures of the reservoirs, and measuring heat currents with a resolution below 1 aW, we demonstrate that the device can be operated as a quantum heat engine, thermal accelerator, and refrigerator. Our findings open new avenues for investigating quantum thermodynamics using superconducting quantum machines coupled to thermal microwave waveguides.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. E. H. Lieb and J. Yngvason, Physics Reports 310, 1 (1999).
  2. M. Horodecki and J. Oppenheim, Nature Communications 4, 2059 (2013), number: 1 Publisher: Nature Publishing Group.
  3. N. Yunger Halpern and J. M. Renes, Physical Review E 93, 022126 (2016), publisher: American Physical Society.
  4. N. Y. Halpern, Journal of Physics A: Mathematical and Theoretical 51, 094001 (2018), publisher: IOP Publishing.
  5. M. Lostaglio, D. Jennings, and T. Rudolph, New Journal of Physics 19, 043008 (2017), publisher: IOP Publishing.
  6. C. Sparaciari, J. Oppenheim, and T. Fritz, Physical Review A 96, 052112 (2017), publisher: American Physical Society.
  7. A. A. S. Kalaee, A. Wacker, and P. P. Potts, Physical Review E 104, L012103 (2021), publisher: American Physical Society.
  8. M. Lostaglio, Physical Review Letters 125, 230603 (2020), publisher: American Physical Society.
  9. N. M. Myers and S. Deffner, Physical Review E 101, 012110 (2020), publisher: American Physical Society.
  10. N. Linden, S. Popescu, and P. Skrzypczyk, Physical Review Letters 105, 130401 (2010), publisher: American Physical Society.
  11. A. Levy and R. Kosloff, Physical Review Letters 108, 070604 (2012), publisher: American Physical Society.
  12. Y.-X. Chen and S.-W. Li, EPL (Europhysics Letters) 97, 40003 (2012).
  13. D. Venturelli, R. Fazio, and V. Giovannetti, Physical Review Letters 110, 256801 (2013), publisher: American Physical Society.
  14. R. Silva, P. Skrzypczyk, and N. Brunner, Physical Review E 92, 012136 (2015), publisher: American Physical Society.
  15. J.-Y. Du and F.-L. Zhang, New Journal of Physics 20, 063005 (2018), publisher: IOP Publishing.
  16. V. Holubec and T. Novotný, The Journal of Chemical Physics 151, 044108 (2019).
  17. M. T. Mitchison, Contemporary Physics 60, 164 (2019a), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00107514.2019.1631555.
  18. B. Bhandari and A. N. Jordan, Physical Review B 104, 075442 (2021), publisher: American Physical Society.
  19. M. W. AlMasri and M. R. B. Wahiddin, Reports on Mathematical Physics 89, 185 (2022).
  20. M. T. Mitchison, Contemporary Physics 60, 164 (2019b), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/00107514.2019.1631555.
  21. H. E. D. Scovil and E. O. Schulz-DuBois, Physical Review Letters 2, 262 (1959), publisher: American Physical Society.
  22. J. E. Geusic, E. O. Schulz-DuBios, and H. E. D. Scovil, Physical Review 156, 343 (1967), publisher: American Physical Society.
  23. J. P. Palao, R. Kosloff, and J. M. Gordon, Physical Review E 64, 056130 (2001), publisher: American Physical Society.
  24. C. Van den Broeck and R. Kawai, Physical Review Letters 96, 210601 (2006), publisher: American Physical Society.
  25. J. P. Pekola and F. W. J. Hekking, Physical Review Letters 98, 210604 (2007), arXiv:cond-mat/0702233.
  26. J. Parrondo and B. de Cisneros, Applied Physics A 75, 179 (2002).
  27. P. Reimann, Physics Reports 361, 57 (2002).
  28. R. D. Astumian and P. Hänggi, Physics Today 55, 33 (2002).
  29. L. Chen, Z. Ding, and F. Sun, Applied Mathematical Modelling 35, 2945 (2011).
  30. R. Rehammar and S. Gasparinetti, IEEE Transactions on Microwave Theory and Techniques 10.1109/TMTT.2023.3238543 (2023), conference Name: IEEE Transactions on Microwave Theory and Techniques.
  31. M. F. Gely and G. A. Steele, New Journal of Physics 22, 013025 (2020), publisher: IOP Publishing.
  32. J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234 (2013).
Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.