How much information can be extracted from galaxy clustering at the field level? (2403.03220v3)
Abstract: We present optimal Bayesian field-level cosmological constraints from nonlinear tracers of the large-scale structure, specifically the amplitude $\sigma_8$ of linear matter fluctuations inferred from rest-frame simulated dark matter halos in a comoving volume of $8\,(h{-1}\mathrm{Gpc})3$. Our constraint on $\sigma_8$ is entirely due to nonlinear information, and obtained by explicitly sampling the initial conditions along with bias and noise parameters via a Lagrangian EFT-based forward model, LEFTfield. The comparison with a simulation-based inference analysis employing the power spectrum and bispectrum -- likewise using the LEFTfield forward model -- shows that, when including precisely the same modes of the same data up to $k_{\mathrm{max}}= 0.10\,h\,\mathrm{Mpc}{-1}$ ($0.12\,h\,\mathrm{Mpc}{-1}$), the field-level approach yields a factor of 3.5 (5.2) improvement on the $\sigma_8$ constraint, from 20.0% to 5.7% (17.0% to 3.3%). This study provides direct insights into cosmological information encoded in galaxy clustering beyond low-order $n$-point functions.
- N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
- S. Aiola et al. (ACT), JCAP 12, 047 (2020), arXiv:2007.07288 [astro-ph.CO].
- L. Balkenhol et al. (SPT-3G), Phys. Rev. D 108, 023510 (2023), arXiv:2212.05642 [astro-ph.CO].
- M. S. Madhavacheril et al. (ACT), Astrophys. J. 962, 113 (2024), arXiv:2304.05203 [astro-ph.CO].
- C. Heymans et al., Astron. Astrophys. 646, A140 (2021), arXiv:2007.15632 [astro-ph.CO].
- T. M. C. Abbott et al. (DES), Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO].
- T. M. C. Abbott et al. (Kilo-Degree Survey, Dark Energy Survey), Open J. Astrophys. 6, 2305.17173 (2023), arXiv:2305.17173 [astro-ph.CO].
- S. Sugiyama et al., Phys. Rev. D 108, 123521 (2023), arXiv:2304.00705 [astro-ph.CO].
- A. Amon and G. Efstathiou, Mon. Not. Roy. Astron. Soc. (2022), 10.1093/mnras/stac2429, arXiv:2206.11794 [astro-ph.CO].
- Y. Akrami et al. (Planck), Astron. Astrophys. 641, A7 (2020), arXiv:1906.02552 [astro-ph.CO].
- We note that some previous studies in the context of cosmological parameter inference, e.g. [59, 60], used the term “field-level inference” for a different analysis. As their inference pipeline relied on neural network data compression, there is in fact no guarantee that this neural compression is lossless and the encoded summary statistics capture all relevant cosmological information.
- F. Schmidt, JCAP 04, 033 (2021a), arXiv:2012.09837 [astro-ph.CO].
- F. Schmidt, JCAP 04, 032 (2021b), arXiv:2009.14176 [astro-ph.CO].
- P. Villanueva-Domingo and F. Villaescusa-Navarro, Astrophys. J. 937, 115 (2022), arXiv:2204.13713 [astro-ph.CO].
- Beyond-2pt Collaboration, (2024), arXiv:24XX.XXXXX [astro-ph.CO].
- T. Ishiyama et al., Mon. Not. Roy. Astron. Soc. 506, 4210 (2021), arXiv:2007.14720 [astro-ph.CO].
- B. Tucci and F. Schmidt, arXiv e-prints , arXiv:2310.03741 (2023), arXiv:2310.03741 [astro-ph.CO].
- G. Cabass and F. Schmidt, JCAP 07, 051 (2020a), arXiv:2004.00617 [astro-ph.CO].
- G. Cabass and F. Schmidt, JCAP 04, 042 (2020b), arXiv:1909.04022 [astro-ph.CO].
- J. Jasche and G. Lavaux, Astron. Astrophys. 625, A64 (2019), arXiv:1806.11117 [astro-ph.CO].
- R. Neal, in Handbook of Markov Chain Monte Carlo (2011) pp. 113–162.
- R. M. Neal, arXiv e-prints , physics/0009028 (2000), arXiv:physics/0009028 [physics.data-an].
- The cost of our forward model scales directly as ∼Λ3lnΛsimilar-toabsentsuperscriptΛ3Λ\sim\Lambda^{3}\ln\Lambda∼ roman_Λ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_ln roman_Λ.
- A. Aghamousa et al. (DESI), (2016), arXiv:1611.00036 [astro-ph.IM].
- A. Blanchard et al. (Euclid), Astron. Astrophys. 642, A191 (2020), arXiv:1910.09273 [astro-ph.CO].
- B. Bose et al. (Euclid), (2023), arXiv:2311.13529 [astro-ph.CO].
- M. Takada et al. (PFS), PASJ 66, R1 (2014), arXiv:1206.0737 [astro-ph.CO].
- P. Lemos et al., in 40th International Conference on Machine Learning (2023) arXiv:2310.15256 [astro-ph.CO].
- C. Hahn et al., (2023), arXiv:2310.15246 [astro-ph.CO].
- P. McDonald and A. Roy, JCAP 08, 020 (2009), arXiv:0902.0991 [astro-ph.CO].
- O. H. E. Philcox and M. M. Ivanov, Phys. Rev. D 105, 043517 (2022), arXiv:2112.04515 [astro-ph.CO].
- See Sec. 2.5.2-2.5.3 in [20].
- D. P. Kingma and J. Ba, arXiv e-prints , arXiv:1412.6980 (2014), arXiv:1412.6980 [cs.LG].