Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How much information can be extracted from galaxy clustering at the field level? (2403.03220v3)

Published 5 Mar 2024 in astro-ph.CO and astro-ph.IM

Abstract: We present optimal Bayesian field-level cosmological constraints from nonlinear tracers of the large-scale structure, specifically the amplitude $\sigma_8$ of linear matter fluctuations inferred from rest-frame simulated dark matter halos in a comoving volume of $8\,(h{-1}\mathrm{Gpc})3$. Our constraint on $\sigma_8$ is entirely due to nonlinear information, and obtained by explicitly sampling the initial conditions along with bias and noise parameters via a Lagrangian EFT-based forward model, LEFTfield. The comparison with a simulation-based inference analysis employing the power spectrum and bispectrum -- likewise using the LEFTfield forward model -- shows that, when including precisely the same modes of the same data up to $k_{\mathrm{max}}= 0.10\,h\,\mathrm{Mpc}{-1}$ ($0.12\,h\,\mathrm{Mpc}{-1}$), the field-level approach yields a factor of 3.5 (5.2) improvement on the $\sigma_8$ constraint, from 20.0% to 5.7% (17.0% to 3.3%). This study provides direct insights into cosmological information encoded in galaxy clustering beyond low-order $n$-point functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO].
  2. S. Aiola et al. (ACT), JCAP 12, 047 (2020), arXiv:2007.07288 [astro-ph.CO].
  3. L. Balkenhol et al. (SPT-3G), Phys. Rev. D 108, 023510 (2023), arXiv:2212.05642 [astro-ph.CO].
  4. M. S. Madhavacheril et al. (ACT), Astrophys. J. 962, 113 (2024), arXiv:2304.05203 [astro-ph.CO].
  5. C. Heymans et al., Astron. Astrophys. 646, A140 (2021), arXiv:2007.15632 [astro-ph.CO].
  6. T. M. C. Abbott et al. (DES), Phys. Rev. D 105, 023520 (2022), arXiv:2105.13549 [astro-ph.CO].
  7. T. M. C. Abbott et al. (Kilo-Degree Survey, Dark Energy Survey), Open J. Astrophys. 6, 2305.17173 (2023), arXiv:2305.17173 [astro-ph.CO].
  8. S. Sugiyama et al., Phys. Rev. D 108, 123521 (2023), arXiv:2304.00705 [astro-ph.CO].
  9. A. Amon and G. Efstathiou, Mon. Not. Roy. Astron. Soc.  (2022), 10.1093/mnras/stac2429, arXiv:2206.11794 [astro-ph.CO].
  10. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A7 (2020), arXiv:1906.02552 [astro-ph.CO].
  11. We note that some previous studies in the context of cosmological parameter inference, e.g. [59, 60], used the term “field-level inference” for a different analysis. As their inference pipeline relied on neural network data compression, there is in fact no guarantee that this neural compression is lossless and the encoded summary statistics capture all relevant cosmological information.
  12. F. Schmidt, JCAP 04, 033 (2021a), arXiv:2012.09837 [astro-ph.CO].
  13. F. Schmidt, JCAP 04, 032 (2021b), arXiv:2009.14176 [astro-ph.CO].
  14. P. Villanueva-Domingo and F. Villaescusa-Navarro, Astrophys. J. 937, 115 (2022), arXiv:2204.13713 [astro-ph.CO].
  15. Beyond-2pt Collaboration,   (2024), arXiv:24XX.XXXXX [astro-ph.CO].
  16. T. Ishiyama et al., Mon. Not. Roy. Astron. Soc. 506, 4210 (2021), arXiv:2007.14720 [astro-ph.CO].
  17. B. Tucci and F. Schmidt, arXiv e-prints , arXiv:2310.03741 (2023), arXiv:2310.03741 [astro-ph.CO].
  18. G. Cabass and F. Schmidt, JCAP 07, 051 (2020a), arXiv:2004.00617 [astro-ph.CO].
  19. G. Cabass and F. Schmidt, JCAP 04, 042 (2020b), arXiv:1909.04022 [astro-ph.CO].
  20. J. Jasche and G. Lavaux, Astron. Astrophys. 625, A64 (2019), arXiv:1806.11117 [astro-ph.CO].
  21. R. Neal, in Handbook of Markov Chain Monte Carlo (2011) pp. 113–162.
  22. R. M. Neal, arXiv e-prints , physics/0009028 (2000), arXiv:physics/0009028 [physics.data-an].
  23. The cost of our forward model scales directly as ∼Λ3⁢ln⁡Λsimilar-toabsentsuperscriptΛ3Λ\sim\Lambda^{3}\ln\Lambda∼ roman_Λ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT roman_ln roman_Λ.
  24. A. Aghamousa et al. (DESI),   (2016), arXiv:1611.00036 [astro-ph.IM].
  25. A. Blanchard et al. (Euclid), Astron. Astrophys. 642, A191 (2020), arXiv:1910.09273 [astro-ph.CO].
  26. B. Bose et al. (Euclid),   (2023), arXiv:2311.13529 [astro-ph.CO].
  27. M. Takada et al. (PFS), PASJ 66, R1 (2014), arXiv:1206.0737 [astro-ph.CO].
  28. P. Lemos et al., in 40th International Conference on Machine Learning (2023) arXiv:2310.15256 [astro-ph.CO].
  29. C. Hahn et al.,   (2023), arXiv:2310.15246 [astro-ph.CO].
  30. P. McDonald and A. Roy, JCAP 08, 020 (2009), arXiv:0902.0991 [astro-ph.CO].
  31. O. H. E. Philcox and M. M. Ivanov, Phys. Rev. D 105, 043517 (2022), arXiv:2112.04515 [astro-ph.CO].
  32. See Sec. 2.5.2-2.5.3 in [20].
  33. D. P. Kingma and J. Ba, arXiv e-prints , arXiv:1412.6980 (2014), arXiv:1412.6980 [cs.LG].
Citations (17)

Summary

  • The paper introduces the LEFTfield framework to leverage full three-dimensional galaxy clustering data for improved σ8 constraints.
  • It demonstrates a reduction in σ8 uncertainty by up to 5.2 times compared to traditional power spectrum and bispectrum methods.
  • The approach mitigates the degeneracy between linear bias and σ8, paving the way for refined cosmological parameter estimates.

Insights into Cosmological Information from Nonlinear Galaxy Clustering

The paper "How much information can be extracted from galaxy clustering at the field level?" explores the extraction of cosmological information from galaxy clustering beyond traditional low-order summary statistics. The authors focus primarily on the parameter σ8\sigma_8, which quantifies the amplitude of linear matter fluctuations, using data from simulated dark matter halos. Their approach contrasts field-level statistics with power spectrum and bispectrum summary statistics to determine which method provides stronger constraints on σ8\sigma_8.

Methodological Advances

The authors employ an advanced field-level inference framework grounded in Lagrangian effective field theory (EFT), termed {LEFTfield}, to model cosmological density fields. This method allows for the exploration of how nonlinear clustering phenomena can break the degeneracy between linear bias and σ8\sigma_8, often encountered at linear order. Unlike traditional approaches relying on two-point and three-point functions, this paper leverages the entire three-dimensional tracer field data to derive constraints, thus purportedly offering a fuller capture of cosmological information.

Strong Numerical Results

The findings demonstrate remarkable improvement using field-level approaches, with constraints on σ8\sigma_8 significantly tightened when compared to the traditional power spectrum and bispectrum methods. Specifically, when analyzing modes up to k=0.10Mpc1k_ = 0.10 \, Mpc^{-1}, the field-level method achieves a 3.5-fold improvement, reducing the uncertainty from 20.0% to 5.7%. Extending the analysis to k=0.12Mpc1k_ = 0.12 \, Mpc^{-1} further improves the constraint by 5.2 times, enhancing precision from 17.0% to 3.3%. These results underscore the potential of field-level methods in revealing deeper insights into the clustering of galaxies.

Implications and Future Directions

The implications of these findings are profound for cosmological research. This work not only advances the understanding of σ8\sigma_8 in relation to both cosmic microwave background and late-universe weak lensing data but also provides a novel methodology that could resolve current tensions in cosmological parameter estimation. By leveraging the information encoded at the field level, this approach could significantly refine constraints on other cosmological parameters and enhance the predictive power of standard cosmological models.

Future research directions might include extending field-level inference methods to incorporate redshift-space distortions (RSD). This would allow for direct estimation of the linear growth rate, ff, further probing modifications to General Relativity and Dark Energy models. Additionally, as computational resources become more accessible, these methods could be applied to real-world survey data, potentially enhancing the scientific output from upcoming cosmological projects such as DESI, Euclid, and PFS.

In conclusion, the paper presents a compelling case for adopting field-level inference in cosmological analyses of galaxy clustering. The demonstrated improvements in parameter constraints indicate that such methodologies could play a crucial role in furthering our understanding of the Universe's large-scale structure evolution, providing a robust tool for cosmological research in the years to come.

Youtube Logo Streamline Icon: https://streamlinehq.com