Non-Gaussian two mode squeezed thermal states in continuous variable quantum teleportation (2403.03204v1)
Abstract: While photon catalyzed two mode squeezed vacuum state has been considered in context of quantum teleportation, similar studies have not been yet conducted for photon catalyzed two-mode squeezed thermal (TMST) state. This can be attributed to challenges involved in the evaluation of teleportation fidelity for photon catalyzed TMST state. In this article, we consider a practical scheme for the implementation of non-Gaussian operation, viz., photon subtraction, photon addition, and photon catalysis, on TMST state. The generated states are employed as resources in continuous-variable quantum teleportation. The results show that the three non-Gaussian operations can enhance the teleportation fidelity. Considering the success probability of the non-Gaussian operations, we identify single-photon catalysis and single photon subtraction to be optimal for teleporting input coherent states, at low and intermediate squeezing levels.
- S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005).
- M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, Properties of squeezed number states and squeezed thermal states, Phys. Rev. A 40, 2494 (1989).
- R. Chrapkiewicz, Photon counts statistics of squeezed and multimode thermal states of light on multiplexed on–off detectors, J. Opt. Soc. Am. B 31, B8 (2014).
- E. Fitzke, F. Niederschuh, and T. Walther, Simulating the photon statistics of multimode Gaussian states by automatic differentiation of generating functions, APL Photonics 8, 10.1063/5.0129638 (2023), 026106.
- P. Marian, Higher-order squeezing and photon statistics for squeezed thermal states, Phys. Rev. A 45, 2044 (1992).
- P. Marian, T. A. Marian, and H. Scutaru, Bures distance as a measure of entanglement for two-mode squeezed thermal states, Phys. Rev. A 68, 062309 (2003).
- M. Cuzminschi, A. Zubarev, and A. Isar, Extractable quantum work from a two-mode gaussian state in a noisy channel, Scientific Reports 11, 24286 (2021).
- R. Birrittella, J. Mimih, and C. C. Gerry, Multiphoton quantum interference at a beam splitter and the approach to heisenberg-limited interferometry, Phys. Rev. A 86, 063828 (2012).
- R. Carranza and C. C. Gerry, Photon-subtracted two-mode squeezed vacuum states and applications to quantum optical interferometry, J. Opt. Soc. Am. B 29, 2581 (2012).
- Y. Ouyang, S. Wang, and L. Zhang, Quantum optical interferometry via the photon-added two-mode squeezed vacuum states, J. Opt. Soc. Am. B 33, 1373 (2016).
- C. Kumar, Rishabh, and S. Arora, Realistic non-gaussian-operation scheme in parity-detection-based mach-zehnder quantum interferometry, Phys. Rev. A 105, 052437 (2022).
- T. Opatrný, G. Kurizki, and D.-G. Welsch, Improvement on teleportation of continuous variables by photon subtraction via conditional measurement, Phys. Rev. A 61, 032302 (2000).
- Y. Yang and F.-L. Li, Entanglement properties of non-gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement, Phys. Rev. A 80, 022315 (2009).
- X.-x. Xu, Enhancing quantum entanglement and quantum teleportation for two-mode squeezed vacuum state by local quantum-optical catalysis, Phys. Rev. A 92, 012318 (2015).
- L. Hu, Z. Liao, and M. S. Zubairy, Continuous-variable entanglement via multiphoton catalysis, Phys. Rev. A 95, 012310 (2017).
- C. Kumar and S. Arora, Success probability and performance optimization in non-gaussian continuous-variable quantum teleportation, Phys. Rev. A 107, 012418 (2023).
- C. Kumar, M. Sharma, and S. Arora, Continuous variable quantum teleportation in a dissipative environment: Comparison of non-gaussian operations before and after noisy channel, Advanced Quantum Technologies n/a, 2300344.
- L.-Y. Hu, F. Jia, and Z.-M. Zhang, Entanglement and nonclassicality of photon-added two-mode squeezed thermal state, J. Opt. Soc. Am. B 29, 1456 (2012).
- A. Zavatta, S. Viciani, and M. Bellini, Tomographic reconstruction of the single-photon fock state by high-frequency homodyne detection, Phys. Rev. A 70, 053821 (2004).
- A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, Quantum homodyne tomography of a two-photon fock state, Phys. Rev. Lett. 96, 213601 (2006).
- A. E. Lita, A. J. Miller, and S. W. Nam, Counting near-infrared single-photons with 95% efficiency, Opt. Express 16, 3032 (2008).
- S. L. Braunstein and H. J. Kimble, Teleportation of continuous quantum variables, Phys. Rev. Lett. 80, 869 (1998).
- S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, Criteria for continuous-variable quantum teleportation, Journal of Modern Optics 47, 267 (2000).
- O. Rosas-Ortiz and K. Zelaya, Theory of photon subtraction for two-mode entangled light beams, Quantum Reports 3, 500 (2021).
- C. Vendromin and M. M. Dignam, Continuous-variable entanglement in a two-mode lossy cavity: An analytic solution, Phys. Rev. A 103, 022418 (2021).
- C. Kumar, Rishabh, and S. Arora, Enhanced phase estimation in parity-detection-based mach–zehnder interferometer using non-gaussian two-mode squeezed thermal input state, Annalen der Physik 535, 2300117 (2023).
- C. Kumar, G. Saxena, and Arvind, Continuous-variable clauser-horne bell-type inequality: A tool to unearth the nonlocality of continuous-variable quantum-optical systems, Phys. Rev. A 103, 042224 (2021).
- M. Allegra, P. Giorda, and M. G. A. Paris, Role of initial entanglement and non-gaussianity in the decoherence of photon-number entangled states evolving in a noisy channel, Phys. Rev. Lett. 105, 100503 (2010).
- J. S. Ivan, M. S. Kumar, and R. Simon, A measure of non-gaussianity for quantum states, Quantum Information Processing 11, 853 (2012).
- W. Ge and M. S. Zubairy, Evaluating single-mode nonclassicality, Phys. Rev. A 102, 043703 (2020).
- G. Adesso and F. Illuminati, Entanglement in continuous-variable systems: recent advances and current perspectives, J. Phys. A 40, 7821 (2007).
- S. Olivares, Quantum optics in the phase space, The European Physical Journal Special Topics 203, 3 (2012).