Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-rank approximated Kalman-Bucy filters using Oja's principal component flow for linear time-invariant systems (2403.03104v3)

Published 5 Mar 2024 in math.OC, cs.SY, and eess.SY

Abstract: The Kalman-Bucy filter is extensively utilized across various applications. However, its computational complexity increases significantly in large-scale systems. To mitigate this challenge, a low-rank approximated Kalman--Bucy filter was proposed, comprising Oja's principal component flow and a low-dimensional Riccati differential equation. Previously, the estimation error was confirmed solely for linear time-invariant systems with a symmetric system matrix. This study extends the application by eliminating the constraint on the symmetricity of the system matrix and describes the equilibrium points of the Oja flow along with their stability for general matrices. In addition, the domain of attraction for a set of stable equilibrium points is estimated. Based on these findings, we demonstrate that the low-rank approximated Kalman--Bucy filter with a suitable rank maintains a bounded estimation error covariance matrix if the system is controllable and observable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, vol. 82, pp. 35–45, 03 1960.
  2. R. E. Kalman and R. S. Bucy, “New Results in Linear Filtering and Prediction Theory,” Journal of Basic Engineering, vol. 83, pp. 95–108, 03 1961.
  3. B. O. Teixeira, M. A. Santillo, R. S. Erwin, and D. S. Bernstein, “Spacecraft tracking using sampled-data Kalman filters,” IEEE Control Systems Magazine, vol. 28, no. 4, pp. 78–94, 2008.
  4. M. E. Pittelkau, “Kalman Filtering for Spacecraft System Alignment Calibration,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 6, pp. 1187–1195, 2001.
  5. C. Federico and B. Massimiliano, “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output,” Applied Energy, vol. 99, pp. 154–166, 2012.
  6. M. Kunii, T. Miyoshi, and E. Kalnay, “Estimating the Impact of Real Observations in Regional Numerical Weather Prediction Using an Ensemble Kalman Filter,” Monthly Weather Review, vol. 140, no. 6, pp. 1975 – 1987, 2012.
  7. Y. Che, X. Peng, L. Delle Monache, T. Kawaguchi, and F. Xiao, “A wind power forecasting system based on the weather research and forecasting model and Kalman filtering over a wind-farm in Japan,” Journal of Renewable and Sustainable Energy, vol. 8, p. 013302, 01 2016.
  8. M. Senel, K. Chintalapudi, D. Lal, A. Keshavarzian, and E. J. Coyle, “A Kalman filter based link quality estimation scheme for wireless sensor networks,” in IEEE GLOBECOM 2007-IEEE Global Telecommunications Conference, pp. 875–880, IEEE, 2007.
  9. X. Lai, T. Yang, Z. Wang, and P. Chen, “IoT Implementation of Kalman Filter to Improve Accuracy of Air Quality Monitoring and Prediction,” Applied Sciences, vol. 9, no. 9, 2019.
  10. S. Gugercin and A. C. Antoulas, “A Survey of Model Reduction by Balanced Truncation and Some New Results,” International Journal of Control, vol. 77, no. 8, pp. 748–766, 2004.
  11. H. Shingin and Y. Ohta, “Reduction of state variables based on regulation and filtering performances,” Automatica, vol. 92, pp. 143–154, 2018.
  12. G. Kirsten and V. Simoncini, “Order Reduction Methods for Solving Large-Scale Differential Matrix Riccati Equations,” SIAM Journal on Scientific Computing, vol. 42, no. 4, pp. A2182–A2205, 2020.
  13. T. Stillfjord, “Adaptive high-order splitting schemes for large-scale differential Riccati equations,” Numerical Algorithms, vol. 78, no. 4, pp. 1129–1151, 2018.
  14. Springer Berlin Heidelberg, 2013.
  15. S. Yamada and K. Ohki, “On a New Low-Rank Kalman-Bucy Filter and its Convergence Property,” Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications, vol. 2021, pp. 16–20, 2021.
  16. E. Oja, “Simplified neuron model as a principal component analyzer,” Journal of Mathematical Biology, vol. 15, pp. 267–273, 1982.
  17. S. Yamada and K. Ohki, “Comparison of Estimation Error between Two Different Low-Rank Kalman-Bucy Filters,” in 2021 60th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), Sept. 2021.
  18. E. Oja and J. Karhunen, “On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix,” Journal of Mathematical Analysis and Applications, vol. 106, no. 1, pp. 69–84, 1985.
  19. L. Xu, “Least mean square error reconstruction principle for self-organizing neural-nets,” Neural Networks, vol. 6, no. 5, pp. 627–648, 1993.
  20. T. Chen and S.-i. Amari, “Unified stabilization approach to principal and minor components extraction algorithms,” Neural Networks, vol. 14, no. 10, pp. 1377–1387, 2001.
  21. S. Yoshizawa, U. Helmke, and K. Starkov, “Convergence analysis for principal component flows,” International Journal of Applied Mathematics and Computer Science, vol. 11, pp. 223–236, 2001.
  22. Princeton: Princeton University Press, 2008.
  23. J.-G. Liu and Z. Liu, “Convergence of Oja’s online principal component flow,” arXiv preprint arXiv:2202.11308v1, 2022.
  24. S. Yoshizawa, “Dynamical systems for eigenvalue problems of axisymmetric matrices with positive eigenvalues,” arXiv preprint arXiv:2307.09635v1, 2023.
  25. R. S. Bucy and P. D. Joseph, Filtering for Stochastic Processes with Applications to Guidance. Chelsea Pub Co, 2 ed., 1987.
  26. Springer New York, 2003.
Citations (1)

Summary

We haven't generated a summary for this paper yet.