Two-Phase Channel Estimation for RIS-Assisted THz Systems with Beam Split (2403.03015v2)
Abstract: Reconfigurable intelligent surface (RIS)-assisted terahertz (THz) communication is emerging as a key technology to support ultra-high data rates in future sixth-generation networks. However, the acquisition of accurate channel state information (CSI) in such systems is challenging due to the passive nature of RIS and the hybrid beamforming architecture typically employed in THz systems. To address these challenges, we propose a novel low-complexity two-phase channel estimation scheme for RIS-assisted THz systems with beam split effect. In the proposed scheme, we first estimate the full CSI over a small subset of subcarriers, then extract angular information at both the base station and RIS. Subsequently, we recover the full CSI across remaining subcarriers by determining the corresponding spatial directions and angle-excluded coefficients. Theoretical analysis and simulation results demonstrate that the proposed method achieves superior performance in terms of normalized mean-square error while significantly reducing computational complexity compared to existing algorithms.
- H.-J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 256–263, Sep. 2011.
- Z. Chen, B. Ning, C. Han, Z. Tian, and S. Li, “Intelligent reflecting surface assisted terahertz communications toward 6G,” IEEE Wireless Commun., vol. 28, no. 6, pp. 110–117, Dec. 2021.
- Y. Yuan, R. He, B. Ai, Z. Ma, Y. Miao, Y. Niu, J. Zhang, R. Chen, and Z. Zhong, “A 3D geometry-based THz channel model for 6G ultra massive MIMO systems,” IEEE Trans. Veh. Tech., vol. 71, no. 3, pp. 2251–2266, Jan. 2022.
- P. Zhang, J. Zhang, H. Xiao, X. Zhang, D. W. K. Ng, and B. Ai, “Joint distributed precoding and beamforming for RIS-aided cell-free massive MIMO systems,” IEEE Trans. Veh. Tech., Nov. 2023.
- E. Björnson, H. Wymeersch, B. Matthiesen, P. Popovski, L. Sanguinetti, and E. de Carvalho, “Reconfigurable intelligent surfaces: A signal processing perspective with wireless applications,” IEEE Signal Process. Mag., vol. 39, no. 2, pp. 135–158, Mar. 2022.
- P. Wang, J. Fang, H. Duan, and H. Li, “Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems,” IEEE Signal Process. Lett., vol. 27, pp. 905–909, May 2020.
- X. Wei, D. Shen, and L. Dai, “Channel estimation for RIS assisted wireless communications—part II: An improved solution based on double-structured sparsity,” IEEE Commun. Lett., vol. 25, no. 5, pp. 1403–1407, May 2021.
- K. Ardah, S. Gherekhloo, A. L. de Almeida, and M. Haardt, “TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems,” IEEE Signal Process. Lett., vol. 28, pp. 513–517, Feb. 2021.
- G. Zhou, C. Pan, H. Ren, P. Popovski, and A. L. Swindlehurst, “Channel estimation for RIS-aided multiuser millimeter-wave systems,” IEEE Trans. Signal Process., vol. 70, pp. 1478–1492, Mar. 2022.
- B. Ning, Z. Chen, W. Chen, Y. Du, and J. Fang, “Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming,” IEEE Trans. Veh. Tech., vol. 70, no. 2, pp. 1376–1393, 2021.
- M. Jian and Y. Zhao, “A modified off-grid SBL channel estimation and transmission strategy for RIS-assisted wireless communication systems,” in Proc. IEEE Int. Wireless Commun. Mobile Comput. IEEE, Jul. 2020, pp. 1848–1853.
- B. Ning, Z. Tian, W. Mei, Z. Chen, C. Han, S. Li, J. Yuan, and R. Zhang, “Beamforming technologies for ultra-massive MIMO in terahertz communications,” IEEE Open J. Commun. Soc., vol. 4, pp. 614–658, Feb. 2023.
- J. Tan and L. Dai, “Delay-phase precoding for THz massive MIMO with beam split,” in Proc. IEEE Global Commun. Conf. IEEE, Feb. 2019, pp. 1–6.
- A. M. Elbir and S. Chatzinotas, “BSA-OMP: Beam-split-aware orthogonal matching pursuit for THz channel estimation,” IEEE Wireless Commun. Lett., vol. 12, no. 4, pp. 738–742, Apr. 2023.
- K. Dovelos, M. Matthaiou, H. Q. Ngo, and B. Bellalta, “Channel estimation and hybrid combining for wideband terahertz massive MIMO systems,” IEEE J. Sel. Areas Commun., vol. 39, no. 6, pp. 1604–1620, Apr. 2021.
- X. Su, R. He, B. Ai, Y. Niu, and G. Wang, “Channel estimation for RIS assisted THz systems with beam split,” IEEE Commun. Lett., Jan. 2024.
- J. Wu, S. Kim, and B. Shim, “Parametric sparse channel estimation for RIS-assisted terahertz systems,” IEEE Trans. Commun., Jun. 2023.
- J. Tan and L. Dai, “Wideband channel estimation for THz massive MIMO,” China Commun., vol. 18, no. 5, pp. 66–80, May 2021.
- C. Wei, Z. Yang, J. Dang, P. Li, H. Wang, and X. Yu, “Accurate wideband channel estimation for THz massive MIMO systems,” IEEE Commun. Lett., vol. 27, no. 1, pp. 293–297, Jan. 2022.
- X. Su, R. He, P. Zhang, and B. Ai, “Generalized approximating message passing based channel estimation for RIS-aided THz communications with beam split,” IEEE Proc. Veh. Tech. Conf., submitted, 2024.
- O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Jan. 2014.
- L. Dai, J. Tan, Z. Chen, and H. V. Poor, “Delay-phase precoding for wideband THz massive MIMO,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 7271–7286, Mar. 2022.
- R. Su, L. Dai, and D. W. K. Ng, “Wideband precoding for RIS-aided THz communications,” IEEE Trans. Commun., Mar. 2023.
- F. Bellili, F. Sohrabi, and W. Yu, “Generalized approximate message passing for massive MIMO mmWave channel estimation with Laplacian prior,” IEEE Trans. Commun., vol. 67, no. 5, pp. 3205–3219, Jan. 2019.
- R. He, B. Ai, G. Wang, M. Yang, C. Huang, and Z. Zhong, “Wireless channel sparsity: Measurement, analysis, and exploitation in estimation,” IEEE Wireless Commun., vol. 28, no. 4, pp. 113–119, Mar. 2021.
- J. Vila and P. Schniter, “Expectation-maximization Bernoulli-Gaussian approximate message passing,” in Proc. Conf. Signals Syst. Computers. IEEE, Nov. 2011, pp. 799–803.
- Y. Wu and S. Verdú, “Optimal phase transitions in compressed sensing,” IEEE Trans. Inf. Theory, vol. 58, no. 10, pp. 6241–6263, Jun. 2012.
- M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, “Compressive sensing-based adaptive active user detection and channel estimation: Massive access meets massive MIMO,” IEEE Trans. Signal Process., vol. 68, pp. 764–779, Jan. 2020.
- J. P. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture approximate message passing,” IEEE Trans. Signal Process., vol. 61, no. 19, pp. 4658–4672, Jul. 2013.
- R. M. Neal and G. E. Hinton, “A view of the EM algorithm that justifies incremental, sparse, and other variants,” in Learn. Graphical Models. Springer, Sep. 1998, pp. 355–368.
- T. K. Moon, “The expectation-maximization algorithm,” IEEE Signal Process. Mag., vol. 13, no. 6, pp. 47–60, Nov. 1996.
- J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.