Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ruin Probability Approximation for Bidimensional Brownian Risk Model with Tax (2403.02941v3)

Published 5 Mar 2024 in math.PR

Abstract: Let $\mathbf{B}(t)=(B_1(t), B_2(t))$, $t\geq 0$ be a two-dimensional Brownian motion with independent components and define the $\mathbf{\gamma}$-reflected process $$\mathbf{X}(t)=(X_1(t),X_2(t))=\left(B_1(t)-c_1t-\gamma_1\inf_{s_1\in[0,t]}(B_1(s_1)-c_1s_1),B_2(t)-c_2t-\gamma_2\inf_{s_2\in[0,t]}(B_2(s_2)-c_2s_2)\right),$$ with given finite constants $c_1,c_2$ and $\gamma_1,\gamma_2\in[0,2)$. The goal of this paper is to derive the asymptotics of the ruin probability $$\mathbb{P}{\exists_{t\in[0,T]}: X_1(t)>u,X_2(t)>au}$$ as $u\to\infty$ and $T>0$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com