Tsirelson bounds for quantum correlations with indefinite causal order (2403.02749v3)
Abstract: Quantum theory is in principle compatible with processes that violate causal inequalities, an analogue of Bell inequalities that constrain the correlations observed by sets of parties operating in a definite causal order. Since the introduction of causal inequalities, determining their maximum quantum violation, analogue to Tsirelson's bound for Bell inequalities, has remained an open problem. Here we provide a general method for bounding the violation of arbitrary causal inequalities, establishing limits to the correlations achievable by arbitrary local experiments and by arbitrary quantum processes with indefinite causal order. We prove that the maximum violation is generally smaller than the algebraic maximum of the corresponding correlation, and determine Tsirelson-like bounds for a class of causal inequalities including some of the most paradigmatic examples. Our results motivate a search for physical principles characterizing the boundary of the set of quantum correlations with indefinite causal order.
- Č. Brukner, Nature Physics 10, 259 (2014).
- O. Oreshkov and C. Giarmatzi, New Journal of Physics 18, 093020 (2016).
- Ä. Baumeler and S. Wolf, in 2014 IEEE International Symposium on Information Theory (IEEE, 2014) pp. 526–530.
- Ä. Baumeler and S. Wolf, New Journal of Physics 18, 013036 (2016).
- S. S. Bhattacharya and M. Banik, arXiv preprint arXiv:1509.02721 (2015).
- S. Popescu and D. Rohrlich, Foundations of Physics 24, 379 (1994).
- W. Van Dam, Nonlocality and communication complexity, Ph.D. thesis, University of Oxford (1999).
- N. Brunner and P. Skrzypczyk, Physical review letters 102, 160403 (2009).
- M. Navascués and H. Wunderlich, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, 881 (2010).
- R. Colbeck, arXiv preprint arXiv:0911.3814 (2009).
- D. Mayers and A. Yao, in Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No. 98CB36280) (IEEE, 1998) pp. 503–509.
- B. S. Cirel’son, Letters in Mathematical Physics 4, 93 (1980).
- G. Chiribella and Z. Liu, Communications Physics 5, 1 (2022).
- G. Chiribella and D. Ebler, New Journal of Physics 18, 093053 (2016).
- S. Diamond and S. Boyd, The Journal of Machine Learning Research 17, 2909 (2016).
- Č. Brukner, New Journal of Physics 17, 083034 (2015).
- R. Kunjwal and O. Oreshkov, arXiv preprint arXiv:2307.02565 (2023).
- S. Gogioso and N. Pinzani, arXiv preprint arXiv:2303.09017 (2023).
- D. Mayers and A. Yao, Quantum Info. Comput. 4, 273–286 (2004).
- E. B. Davies and J. T. Lewis, Communications in Mathematical Physics 17, 239 (1970).
- M. Ozawa, Journal of Mathematical Physics 25, 79 (1984).
- T. Heinosaari and M. Ziman, The mathematical language of quantum theory: from uncertainty to entanglement (Cambridge University Press, 2011).
- A. Jamiołkowski, Reports on Mathematical Physics 3, 275 (1972).
- M.-D. Choi, Linear algebra and its applications 10, 285 (1975).
- J. Watrous, The theory of quantum information (Cambridge university press, 2018).