Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending echo state property for quantum reservoir computing (2403.02686v6)

Published 5 Mar 2024 in quant-ph, math.DS, and stat.ML

Abstract: The echo state property (ESP) represents a fundamental concept in the reservoir computing (RC) framework that ensures output-only training of reservoir networks by being agnostic to the initial states and far past inputs. However, the traditional definition of ESP does not describe possible non-stationary systems in which statistical properties evolve. To address this issue, we introduce two new categories of ESP: $\textit{non-stationary ESP}$, designed for potentially non-stationary systems, and $\textit{subspace/subset ESP}$, designed for systems whose subsystems have ESP. Following the definitions, we numerically demonstrate the correspondence between non-stationary ESP in the quantum reservoir computer (QRC) framework with typical Hamiltonian dynamics and input encoding methods using non-linear autoregressive moving-average (NARMA) tasks. We also confirm the correspondence by computing linear/non-linear memory capacities that quantify input-dependent components within reservoir states. Our study presents a new understanding of the practical design of QRC and other possibly non-stationary RC systems in which non-stationary systems and subsystems are exploited.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. K. Nakajima, Japanese Journal of Applied Physics 59, 060501 (2020).
  2. H. Jaeger, Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 (2001a).
  3. I. B. Yildiz, H. Jaeger, and S. J. Kiebel, Neural networks 35, 1 (2012).
  4. J. Preskill, Quantum 2, 79 (2018).
  5. K. Fujii and K. Nakajima, Physical Review Applied 8, 10.1103/physrevapplied.8.024030 (2017).
  6. Q. H. Tran and K. Nakajima, Phys. Rev. Lett. 127, 260401 (2021).
  7. Q. H. Tran and K. Nakajima, Higher-order quantum reservoir computing (2020), arXiv:2006.08999 [quant-ph] .
  8. Q. H. Tran, S. Ghosh, and K. Nakajima, Phys. Rev. Res. 5, 043127 (2023).
  9. S. Ghosh, T. Paterek, and T. C. H. Liew, Phys. Rev. Lett. 123, 260404 (2019b).
  10. J. Chen, H. I. Nurdin, and N. Yamamoto, Physical Review Applied 14, 10.1103/physrevapplied.14.024065 (2020).
  11. R. Martínez-Peña and J.-P. Ortega, Physical Review E 107, 10.1103/physreve.107.035306 (2023).
  12. H. Jaeger, Short term memory in echo state networks (GMD Forschungszentrum Informationstechnik, 2001).
  13. D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).
  14. A. Atiya and A. Parlos, IEEE Transactions on Neural Networks 11, 697 (2000).
  15. T. Kubota, H. Takahashi, and K. Nakajima, Phys. Rev. Res. 3, 043135 (2021).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com