Comparative analysis of diverse methodologies for portfolio optimization leveraging quantum annealing techniques (2403.02599v3)
Abstract: Portfolio optimization (PO) is extensively employed in financial services to assist in achieving investment objectives. By providing an optimal asset allocation, PO effectively balances the risk and returns associated with investments. However, it is important to note that as the number of involved assets and constraints increases, the portfolio optimization problem can become increasingly difficult to solve, falling into the category of NP-hard problems. In such scenarios, classical algorithms, such as the Monte Carlo method, exhibit limitations in addressing this challenge when the number of stocks in the portfolio grows. Quantum annealing algorithm holds promise for solving complex portfolio optimization problems in the NISQ era. Many studies have demonstrated the advantages of various quantum annealing algorithm variations over the standard quantum annealing approach. In this work, we conduct a numerical investigation of randomly generated unconstrained single-period discrete mean-variance portfolio optimization instances. We explore the application of a variety of unconventional quantum annealing algorithms, employing both forward annealing and reverse annealing schedules. By comparing the time-to-solution(TTS) and success probabilities of diverse approaches, we show that certain methods exhibit advantages in enhancing the success probability when utilizing conventional forward annealing schedules. Furthermore, we find that the implementation of reverse annealing schedules can significantly improve the performance of select unconventional quantum annealing algorithms.
- K. Erwin and A. Engelbrecht, Soft Computing , 1 (2023).
- D. Suthiwong and M. Sodanil, in 2016 International Computer Science and Engineering Conference (ICSEC) (IEEE, 2016) pp. 1–4.
- P. W. Shor, in Proceedings 35th annual symposium on foundations of computer science (Ieee, 1994) pp. 124–134.
- L. K. Grover, in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing (1996) pp. 212–219.
- S. Lloyd, Science 273, 1073 (1996).
- D. S. Abrams and S. Lloyd, Physical Review Letters 79, 2586 (1997).
- P. W. Shor, SIAM review 41, 303 (1999).
- A. Montanaro, npj Quantum Information 2, 1 (2016).
- E. Farhi and A. W. Harrow, arXiv preprint arXiv:1602.07674 (2016).
- R. Orús, S. Mugel, and E. Lizaso, Reviews in Physics 4, 100028 (2019).
- A. K. Bishwas and J. Advani, in 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET) (IEEE, 2021) pp. 1–7.
- A. K. Bishwas, A. Mani, and V. Palade, in 2022 International Conference for Advancement in Technology (ICONAT) (IEEE, 2022) pp. 1–5.
- M. Schuld, I. Sinayskiy, and F. Petruccione, Contemporary Physics 56, 172 (2015).
- A. K. Bishwas, A. Mani, and V. Palade, in 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I) (IEEE, 2016) pp. 875–880.
- A. K. Bishwas, A. Mani, and V. Palade, Quantum information processing 17, 1 (2018).
- A. K. Bishwas, A. Mani, and V. Palade, Quantum Information Processing 19, 108 (2020a).
- A. K. Bishwas, A. Mani, and V. Palade, International Journal of Quantum Information 18, 2050006 (2020b).
- A. Zeguendry, Z. Jarir, and M. Quafafou, Entropy 25, 287 (2023).
- A. Ajagekar and F. You, Energy 179, 76 (2019).
- A. Ajagekar, T. Humble, and F. You, Computers & Chemical Engineering 132, 106630 (2020).
- S. Abel, A. Blance, and M. Spannowsky, Physical Review A 106, 042607 (2022).
- Y. Cao, J. Romero, and A. Aspuru-Guzik, IBM Journal of Research and Development 62, 6 (2018).
- V. Mahesh and S. Shijo, Evolution and Applications of Quantum Computing , 175 (2023).
- D. Deutsch, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400, 97 (1985).
- P. W. Shor, Physical review A 52, R2493 (1995).
- A. R. Calderbank and P. W. Shor, Physical Review A 54, 1098 (1996).
- A. M. Steane, Physical Review Letters 77, 793 (1996).
- S. J. Devitt, W. J. Munro, and K. Nemoto, Reports on Progress in Physics 76, 076001 (2013).
- D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
- J. Roffe, Contemporary Physics 60, 226 (2019).
- J. Gambetta, IBM Research Blog (September 2020) (2020).
- C. C. McGeoch and P. Farré, ACM Transactions on Quantum Computing (2023).
- P. Jorion, (No Title) (1997).
- P. Jorion, Value at risk: the new benchmark for managing financial risk (The McGraw-Hill Companies, Inc., 2007).
- D. A. Milhomem and M. J. P. Dantas, Production 30 (2020).
- Z. Zhang, S. Zohren, and S. Roberts, The Journal of Financial Data Science (2020).
- J. Sen, A. Dutta, and S. Mehtab, in 2021 IEEE Mysore Sub Section International Conference (MysuruCon) (IEEE, 2021) pp. 263–271.
- K. Yashaswi, arXiv preprint arXiv:2102.06233 (2021).
- A. Gunjan and S. Bhattacharyya, Artificial Intelligence Review 56, 3847 (2023).
- M. Al-Muharraqi and M. Messaadia, in 2023 International Conference On Cyber Management And Engineering (CyMaEn) (IEEE, 2023) pp. 500–504.
- M. Veselỳ, arXiv preprint arXiv:2203.15716 (2022).
- M. Marzec, Handbook of High-Frequency Trading and Modeling in Finance , 73 (2016).
- D. Venturelli and A. Kondratyev, Quantum Machine Intelligence 1, 17 (2019).
- J. Cohen and C. Alexander, arXiv preprint arXiv:2011.01308 (2020).
- J. Cohen, A. Khan, and C. Alexander, arXiv preprint arXiv:2007.01430 (2020a).
- J. Cohen, A. Khan, and C. Alexander, arXiv preprint arXiv:2008.08669 (2020b).
- E. Grant, T. S. Humble, and B. Stump, Physical Review Applied 15, 014012 (2021).
- J. Lang, S. Zielinski, and S. Feld, Applied Sciences 12, 12288 (2022).
- Y. Seki and H. Nishimori, Physical Review E 85, 051112 (2012).
- Y. Seki and H. Nishimori, Journal of Physics A: Mathematical and Theoretical 48, 335301 (2015).
- Y. Susa, J. F. Jadebeck, and H. Nishimori, Physical Review A 95, 042321 (2017).
- Z. Tang and E. Kapit, Physical Review A 103, 032612 (2021).
- A. del Campo, Physical review letters 111, 100502 (2013).
- M. Ohkuwa, H. Nishimori, and D. A. Lidar, Physical Review A 98, 022314 (2018).
- T. Kadowaki and H. Nishimori, Physical Review E 58, 5355 (1998).
- D. Lim and P. Rebentrost, arXiv preprint arXiv:2208.14749 (2022).
- G. Wang, arXiv preprint arXiv:2203.13936 (2022).
- F. Phillipson and H. S. Bhatia, in International Conference on Computational Science (Springer, 2021) pp. 45–59.
- C. Zener, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 137, 696 (1932).
- B. Seoane and H. Nishimori, Journal of Physics A: Mathematical and Theoretical 45, 435301 (2012).
- A. Hartmann and W. Lechner, Physical Review A 100, 032110 (2019a).
- A. del Campo, M. M. Rams, and W. H. Zurek, Physical review letters 109, 115703 (2012).
- Y. Ban and X. Chen, Scientific reports 4, 6258 (2014).
- M. Okuyama and K. Takahashi, Physical review letters 117, 070401 (2016).
- K. Funo, N. Lambert, and F. Nori, Physical Review Letters 127, 150401 (2021).
- J. Wurtz and P. J. Love, Quantum 6, 635 (2022).
- N. N. Hegade, X. Chen, and E. Solano, Physical Review Research 4, L042030 (2022b).
- S. Knysh, Nature communications 7, 12370 (2016).
- N. Chancellor, New Journal of Physics 19, 023024 (2017).
- B. Bhattacharjee, arXiv preprint arXiv:2302.07228 (2023).
- D. Sels and A. Polkovnikov, Proceedings of the National Academy of Sciences 114, E3909 (2017).
- A. Hartmann and W. Lechner, New Journal of Physics 21, 043025 (2019b).
- P. Rebentrost and S. Lloyd, arXiv preprint arXiv:1811.03975 (2018).