Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tunable quantum criticality and pseudocriticality across the fixed-point annihilation in the anisotropic spin-boson model (2403.02400v1)

Published 4 Mar 2024 in cond-mat.str-el, cond-mat.mes-hall, cond-mat.stat-mech, hep-th, and quant-ph

Abstract: Spin-boson models are simple examples of quantum dissipative systems, but also serve as effective models in quantum magnetism and exhibit nontrivial quantum criticality. Recently, they have been established as a platform to study the nontrivial renormalization-group (RG) scenario of fixed-point annihilation, in which two intermediate-coupling RG fixed points collide and generate an extremely slow RG flow near the collision. For the Bose Kondo model, a single $S=1/2$ spin where each spin component couples to an independent bosonic bath with power-law spectrum $\propto \omegas$ via dissipation strengths $\alpha_i$, $i\in{x,y,z}$, such phenomena occur sequentially for the U(1)-symmetric model at $\alpha_z=0$ and the SU(2)-symmetric case at $\alpha_z = \alpha_{xy}$, as the bath exponent $s<1$ is tuned. Here we use an exact wormhole quantum Monte Carlo method to show how fixed-point annihilations within symmetry-enhanced parameter manifolds affect the anisotropy-driven criticality across them. We find a tunable transition between two long-range-ordered localized phases that can be continuous or strongly first-order, and even becomes weakly first-order in an extended regime close to the fixed-point collision. We extract critical exponents at the continuous transition, but also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent $s$. In particular, we provide direct numerical evidence for pseudocritical scaling on both sides of the fixed-point collision, which manifests in an extremely slow drift of the correlation-length exponent. In addition, we also study the crossover behavior away from the SU(2)-symmetric case and determine the phase boundary of an extended U(1)-symmetric critical phase for $\alpha_z < \alpha_{xy}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. M. Vojta, Impurity quantum phase transitions, Philosophical Magazine 86, 1807 (2006).
  2. S. Sachdev, C. Buragohain, and M. Vojta, Quantum Impurity in a Nearly Critical Two-Dimensional Antiferromagnet, Science 286, 2479 (1999).
  3. M. Vojta, C. Buragohain, and S. Sachdev, Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors, Phys. Rev. B 61, 15152 (2000).
  4. S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
  5. A. Nahum, Fixed point annihilation for a spin in a fluctuating field, Phys. Rev. B 106, L081109 (2022).
  6. B. I. Halperin, T. C. Lubensky, and S.-k. Ma, First-Order Phase Transitions in Superconductors and Smectic-A𝐴Aitalic_A Liquid Crystals, Phys. Rev. Lett. 32, 292 (1974).
  7. H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, The European Physical Journal C - Particles and Fields 46, 433 (2006).
  8. L. Janssen, Spontaneous breaking of Lorentz symmetry in (2+ϵ2italic-ϵ2+\epsilon2 + italic_ϵ)-dimensional QED, Phys. Rev. D 94, 094013 (2016).
  9. I. F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation, Phys. Rev. D 94, 025036 (2016).
  10. S. Gukov, RG flows and bifurcations, Nuclear Physics B 919, 583 (2017).
  11. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Scaling theory of the Potts-model multicritical point, Phys. Rev. B 22, 2560 (1980).
  12. K. E. Newman, E. K. Riedel, and S. Muto, Q𝑄Qitalic_Q-state Potts model by Wilson’s exact renormalization-group equation, Phys. Rev. B 29, 302 (1984).
  13. B. Delamotte, D. Mouhanna, and M. Tissier, Nonperturbative renormalization-group approach to frustrated magnets, Phys. Rev. B 69, 134413 (2004).
  14. C. A. Sánchez-Villalobos, B. Delamotte, and N. Wschebor, q𝑞qitalic_q-state Potts model from the nonperturbative renormalization group, Phys. Rev. E 108, 064120 (2023).
  15. J. L. Jacobsen and K. J. Wiese, Lattice realization of complex CFTs: Two-dimensional Potts model with Q>4𝑄4Q>4italic_Q > 4 states (2024), arXiv:2402.10732 [hep-th] .
  16. I. F. Herbut and Z. Tešanović, Critical Fluctuations in Superconductors and the Magnetic Field Penetration Depth, Phys. Rev. Lett. 76, 4588 (1996).
  17. K. Kaveh and I. F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics in the presence of irrelevant interactions: A renormalization group study, Phys. Rev. B 71, 184519 (2005).
  18. I. F. Herbut and L. Janssen, Topological Mott Insulator in Three-Dimensional Systems with Quadratic Band Touching, Phys. Rev. Lett. 113, 106401 (2014).
  19. A. Nahum, Note on Wess-Zumino-Witten models and quasiuniversality in 2+1212+12 + 1 dimensions, Phys. Rev. B 102, 201116 (2020).
  20. R. Ma and C. Wang, Theory of deconfined pseudocriticality, Phys. Rev. B 102, 020407 (2020).
  21. H. Hu and Q. Si, Kondo destruction and fixed-point annihilation in a Bose-Fermi Kondo model (2022), arXiv:2207.08744 [cond-mat.str-el] .
  22. X. Luo, Tunable quantum phase transition in a dissipative two-spin model: A renormalization group study, Phys. Rev. B 107, 165156 (2023).
  23. S. Martin and T. Grover, Critical phase induced by Berry phase and dissipation in a spin chain, Phys. Rev. Res. 5, 043270 (2023).
  24. T. Senthil, Deconfined quantum critical points: a review (2023), arXiv:2306.12638 [cond-mat.str-el] .
  25. A. W. Sandvik, Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions, Phys. Rev. Lett. 98, 227202 (2007).
  26. R. G. Melko and R. K. Kaul, Scaling in the Fan of an Unconventional Quantum Critical Point, Phys. Rev. Lett. 100, 017203 (2008).
  27. A. W. Sandvik, Continuous Quantum Phase Transition between an Antiferromagnet and a Valence-Bond Solid in Two Dimensions: Evidence for Logarithmic Corrections to Scaling, Phys. Rev. Lett. 104, 177201 (2010a).
  28. H. Shao, W. Guo, and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016).
  29. B. Zhao, P. Weinberg, and A. W. Sandvik, Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet, Nature Physics 15, 678 (2019).
  30. P. Serna and A. Nahum, Emergence and spontaneous breaking of approximate O⁢(4)O4\mathrm{O}(4)roman_O ( 4 ) symmetry at a weakly first-order deconfined phase transition, Phys. Rev. B 99, 195110 (2019).
  31. S. K. Kehrein and A. Mielke, On the spin-boson model with a sub-ohmic bath, Physics Letters A 219, 313 (1996).
  32. R. Bulla, N.-H. Tong, and M. Vojta, Numerical Renormalization Group for Bosonic Systems and Application to the Sub-Ohmic Spin-Boson Model, Phys. Rev. Lett. 91, 170601 (2003).
  33. M. Vojta, N.-H. Tong, and R. Bulla, Quantum Phase Transitions in the Sub-Ohmic Spin-Boson Model: Failure of the Quantum-Classical Mapping, Phys. Rev. Lett. 94, 070604 (2005).
  34. M. E. Fisher, S.-k. Ma, and B. G. Nickel, Critical Exponents for Long-Range Interactions, Phys. Rev. Lett. 29, 917 (1972).
  35. J. L. Smith and Q. Si, Non-Fermi liquids in the two-band extended Hubbard model, Europhysics Letters 45, 228 (1999).
  36. A. M. Sengupta, Spin in a fluctuating field: The Bose(+Fermi) Kondo models, Phys. Rev. B 61, 4041 (2000).
  37. L. Zhu and Q. Si, Critical local-moment fluctuations in the Bose-Fermi Kondo model, Phys. Rev. B 66, 024426 (2002).
  38. G. Zaránd and E. Demler, Quantum phase transitions in the Bose-Fermi Kondo model, Phys. Rev. B 66, 024427 (2002).
  39. J. Otsuki, Spin-boson coupling in continuous-time quantum Monte Carlo, Phys. Rev. B 87, 125102 (2013).
  40. A. Cai and Q. Si, Bose-Fermi Anderson model with SU(2) symmetry: Continuous-time quantum Monte Carlo study, Phys. Rev. B 100, 014439 (2019).
  41. M. Weber, Quantum Monte Carlo simulation of spin-boson models using wormhole updates, Phys. Rev. B 105, 165129 (2022).
  42. M. Weber, D. J. Luitz, and F. F. Assaad, Dissipation-Induced Order: The S=1/2𝑆12S=1/2italic_S = 1 / 2 Quantum Spin Chain Coupled to an Ohmic Bath, Phys. Rev. Lett. 129, 056402 (2022).
  43. M. Weber, F. F. Assaad, and M. Hohenadler, Directed-Loop Quantum Monte Carlo Method for Retarded Interactions, Phys. Rev. Lett. 119, 097401 (2017).
  44. A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991).
  45. A. W. Sandvik, Stochastic series expansion method with operator-loop update, Phys. Rev. B 59, R14157 (1999).
  46. O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev. E 66, 046701 (2002).
  47. A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conference Proceedings 1297, 135 (2010b).
  48. M. Beccaria, S. Giombi, and A. A. Tseytlin, Wilson loop in general representation and RG flow in 1D defect QFT, Journal of Physics A: Mathematical and Theoretical 55, 255401 (2022).
  49. H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, 2011).
  50. A. Schmid, Diffusion and Localization in a Dissipative Quantum System, Phys. Rev. Lett. 51, 1506 (1983).
  51. G. Falci and U. Weiss, Duality in the Quantum Dissipative Villain Model and Application to Mesoscopic Josephson Junction Circuits, Journal of Superconductivity 12, 783 (1999).
  52. B. Bruognolo, Master’s thesis, LMU Munich (2013).
  53. B. Nienhuis and M. Nauenberg, First-Order Phase Transitions in Renormalization-Group Theory, Phys. Rev. Lett. 35, 477 (1975).
  54. M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26, 2507 (1982).
  55. https://www.nhr-verein.de/unsere-partner.
Citations (1)

Summary

We haven't generated a summary for this paper yet.