Tunable quantum criticality and pseudocriticality across the fixed-point annihilation in the anisotropic spin-boson model (2403.02400v1)
Abstract: Spin-boson models are simple examples of quantum dissipative systems, but also serve as effective models in quantum magnetism and exhibit nontrivial quantum criticality. Recently, they have been established as a platform to study the nontrivial renormalization-group (RG) scenario of fixed-point annihilation, in which two intermediate-coupling RG fixed points collide and generate an extremely slow RG flow near the collision. For the Bose Kondo model, a single $S=1/2$ spin where each spin component couples to an independent bosonic bath with power-law spectrum $\propto \omegas$ via dissipation strengths $\alpha_i$, $i\in{x,y,z}$, such phenomena occur sequentially for the U(1)-symmetric model at $\alpha_z=0$ and the SU(2)-symmetric case at $\alpha_z = \alpha_{xy}$, as the bath exponent $s<1$ is tuned. Here we use an exact wormhole quantum Monte Carlo method to show how fixed-point annihilations within symmetry-enhanced parameter manifolds affect the anisotropy-driven criticality across them. We find a tunable transition between two long-range-ordered localized phases that can be continuous or strongly first-order, and even becomes weakly first-order in an extended regime close to the fixed-point collision. We extract critical exponents at the continuous transition, but also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent $s$. In particular, we provide direct numerical evidence for pseudocritical scaling on both sides of the fixed-point collision, which manifests in an extremely slow drift of the correlation-length exponent. In addition, we also study the crossover behavior away from the SU(2)-symmetric case and determine the phase boundary of an extended U(1)-symmetric critical phase for $\alpha_z < \alpha_{xy}$.
- M. Vojta, Impurity quantum phase transitions, Philosophical Magazine 86, 1807 (2006).
- S. Sachdev, C. Buragohain, and M. Vojta, Quantum Impurity in a Nearly Critical Two-Dimensional Antiferromagnet, Science 286, 2479 (1999).
- M. Vojta, C. Buragohain, and S. Sachdev, Quantum impurity dynamics in two-dimensional antiferromagnets and superconductors, Phys. Rev. B 61, 15152 (2000).
- S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
- A. Nahum, Fixed point annihilation for a spin in a fluctuating field, Phys. Rev. B 106, L081109 (2022).
- B. I. Halperin, T. C. Lubensky, and S.-k. Ma, First-Order Phase Transitions in Superconductors and Smectic-A𝐴Aitalic_A Liquid Crystals, Phys. Rev. Lett. 32, 292 (1974).
- H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, The European Physical Journal C - Particles and Fields 46, 433 (2006).
- L. Janssen, Spontaneous breaking of Lorentz symmetry in (2+ϵ2italic-ϵ2+\epsilon2 + italic_ϵ)-dimensional QED, Phys. Rev. D 94, 094013 (2016).
- I. F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation, Phys. Rev. D 94, 025036 (2016).
- S. Gukov, RG flows and bifurcations, Nuclear Physics B 919, 583 (2017).
- J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Scaling theory of the Potts-model multicritical point, Phys. Rev. B 22, 2560 (1980).
- K. E. Newman, E. K. Riedel, and S. Muto, Q𝑄Qitalic_Q-state Potts model by Wilson’s exact renormalization-group equation, Phys. Rev. B 29, 302 (1984).
- B. Delamotte, D. Mouhanna, and M. Tissier, Nonperturbative renormalization-group approach to frustrated magnets, Phys. Rev. B 69, 134413 (2004).
- C. A. Sánchez-Villalobos, B. Delamotte, and N. Wschebor, q𝑞qitalic_q-state Potts model from the nonperturbative renormalization group, Phys. Rev. E 108, 064120 (2023).
- J. L. Jacobsen and K. J. Wiese, Lattice realization of complex CFTs: Two-dimensional Potts model with Q>4𝑄4Q>4italic_Q > 4 states (2024), arXiv:2402.10732 [hep-th] .
- I. F. Herbut and Z. Tešanović, Critical Fluctuations in Superconductors and the Magnetic Field Penetration Depth, Phys. Rev. Lett. 76, 4588 (1996).
- K. Kaveh and I. F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics in the presence of irrelevant interactions: A renormalization group study, Phys. Rev. B 71, 184519 (2005).
- I. F. Herbut and L. Janssen, Topological Mott Insulator in Three-Dimensional Systems with Quadratic Band Touching, Phys. Rev. Lett. 113, 106401 (2014).
- A. Nahum, Note on Wess-Zumino-Witten models and quasiuniversality in 2+1212+12 + 1 dimensions, Phys. Rev. B 102, 201116 (2020).
- R. Ma and C. Wang, Theory of deconfined pseudocriticality, Phys. Rev. B 102, 020407 (2020).
- H. Hu and Q. Si, Kondo destruction and fixed-point annihilation in a Bose-Fermi Kondo model (2022), arXiv:2207.08744 [cond-mat.str-el] .
- X. Luo, Tunable quantum phase transition in a dissipative two-spin model: A renormalization group study, Phys. Rev. B 107, 165156 (2023).
- S. Martin and T. Grover, Critical phase induced by Berry phase and dissipation in a spin chain, Phys. Rev. Res. 5, 043270 (2023).
- T. Senthil, Deconfined quantum critical points: a review (2023), arXiv:2306.12638 [cond-mat.str-el] .
- A. W. Sandvik, Evidence for Deconfined Quantum Criticality in a Two-Dimensional Heisenberg Model with Four-Spin Interactions, Phys. Rev. Lett. 98, 227202 (2007).
- R. G. Melko and R. K. Kaul, Scaling in the Fan of an Unconventional Quantum Critical Point, Phys. Rev. Lett. 100, 017203 (2008).
- A. W. Sandvik, Continuous Quantum Phase Transition between an Antiferromagnet and a Valence-Bond Solid in Two Dimensions: Evidence for Logarithmic Corrections to Scaling, Phys. Rev. Lett. 104, 177201 (2010a).
- H. Shao, W. Guo, and A. W. Sandvik, Quantum criticality with two length scales, Science 352, 213 (2016).
- B. Zhao, P. Weinberg, and A. W. Sandvik, Symmetry-enhanced discontinuous phase transition in a two-dimensional quantum magnet, Nature Physics 15, 678 (2019).
- P. Serna and A. Nahum, Emergence and spontaneous breaking of approximate O(4)O4\mathrm{O}(4)roman_O ( 4 ) symmetry at a weakly first-order deconfined phase transition, Phys. Rev. B 99, 195110 (2019).
- S. K. Kehrein and A. Mielke, On the spin-boson model with a sub-ohmic bath, Physics Letters A 219, 313 (1996).
- R. Bulla, N.-H. Tong, and M. Vojta, Numerical Renormalization Group for Bosonic Systems and Application to the Sub-Ohmic Spin-Boson Model, Phys. Rev. Lett. 91, 170601 (2003).
- M. Vojta, N.-H. Tong, and R. Bulla, Quantum Phase Transitions in the Sub-Ohmic Spin-Boson Model: Failure of the Quantum-Classical Mapping, Phys. Rev. Lett. 94, 070604 (2005).
- M. E. Fisher, S.-k. Ma, and B. G. Nickel, Critical Exponents for Long-Range Interactions, Phys. Rev. Lett. 29, 917 (1972).
- J. L. Smith and Q. Si, Non-Fermi liquids in the two-band extended Hubbard model, Europhysics Letters 45, 228 (1999).
- A. M. Sengupta, Spin in a fluctuating field: The Bose(+Fermi) Kondo models, Phys. Rev. B 61, 4041 (2000).
- L. Zhu and Q. Si, Critical local-moment fluctuations in the Bose-Fermi Kondo model, Phys. Rev. B 66, 024426 (2002).
- G. Zaránd and E. Demler, Quantum phase transitions in the Bose-Fermi Kondo model, Phys. Rev. B 66, 024427 (2002).
- J. Otsuki, Spin-boson coupling in continuous-time quantum Monte Carlo, Phys. Rev. B 87, 125102 (2013).
- A. Cai and Q. Si, Bose-Fermi Anderson model with SU(2) symmetry: Continuous-time quantum Monte Carlo study, Phys. Rev. B 100, 014439 (2019).
- M. Weber, Quantum Monte Carlo simulation of spin-boson models using wormhole updates, Phys. Rev. B 105, 165129 (2022).
- M. Weber, D. J. Luitz, and F. F. Assaad, Dissipation-Induced Order: The S=1/2𝑆12S=1/2italic_S = 1 / 2 Quantum Spin Chain Coupled to an Ohmic Bath, Phys. Rev. Lett. 129, 056402 (2022).
- M. Weber, F. F. Assaad, and M. Hohenadler, Directed-Loop Quantum Monte Carlo Method for Retarded Interactions, Phys. Rev. Lett. 119, 097401 (2017).
- A. W. Sandvik and J. Kurkijärvi, Quantum Monte Carlo simulation method for spin systems, Phys. Rev. B 43, 5950 (1991).
- A. W. Sandvik, Stochastic series expansion method with operator-loop update, Phys. Rev. B 59, R14157 (1999).
- O. F. Syljuåsen and A. W. Sandvik, Quantum Monte Carlo with directed loops, Phys. Rev. E 66, 046701 (2002).
- A. W. Sandvik, Computational Studies of Quantum Spin Systems, AIP Conference Proceedings 1297, 135 (2010b).
- M. Beccaria, S. Giombi, and A. A. Tseytlin, Wilson loop in general representation and RG flow in 1D defect QFT, Journal of Physics A: Mathematical and Theoretical 55, 255401 (2022).
- H. Nishimori and G. Ortiz, Elements of Phase Transitions and Critical Phenomena (Oxford University Press, 2011).
- A. Schmid, Diffusion and Localization in a Dissipative Quantum System, Phys. Rev. Lett. 51, 1506 (1983).
- G. Falci and U. Weiss, Duality in the Quantum Dissipative Villain Model and Application to Mesoscopic Josephson Junction Circuits, Journal of Superconductivity 12, 783 (1999).
- B. Bruognolo, Master’s thesis, LMU Munich (2013).
- B. Nienhuis and M. Nauenberg, First-Order Phase Transitions in Renormalization-Group Theory, Phys. Rev. Lett. 35, 477 (1975).
- M. E. Fisher and A. N. Berker, Scaling for first-order phase transitions in thermodynamic and finite systems, Phys. Rev. B 26, 2507 (1982).
- https://www.nhr-verein.de/unsere-partner.