Enhanced many-body quantum scars from the non-Hermitian Fock skin effect (2403.02395v2)
Abstract: In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically-constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates, the non-Hermitian analogs of quantum many-body scars. A distinguishing feature of these non-Hermitian scars is their enhanced robustness against external disorders. We propose an experimental realization of the non-Hermitian scar enhancement in a tilted Bose-Hubbard optical lattice with laser-induced loss. Additionally, we implement digital simulations of such scar enhancement on the IBM quantum processor. Our results show that the Fock skin effect provides a powerful tool for creating robust non-ergodic states in generic open quantum systems.
- M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
- M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
- M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103, 100403 (2009).
- M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and weak thermalization of infinite nonintegrable quantum systems, Phys. Rev. Lett. 106, 050405 (2011).
- J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on Progress in Physics 81, 082001 (2018).
- K. Mallayya, M. Rigol, and W. De Roeck, Prethermalization and thermalization in isolated quantum systems, Phys. Rev. X 9, 021027 (2019).
- J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
- A. Dymarsky, N. Lashkari, and H. Liu, Subsystem eigenstate thermalization hypothesis, Phys. Rev. E 97, 012140 (2018).
- M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
- S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
- B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems (World Scientific Publishing Company, 2004).
- R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
- M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets, Phys. Rev. Lett. 123, 147201 (2019).
- D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models, Phys. Rev. B 101, 195131 (2020).
- K. Omiya and M. Müller, Quantum many-body scars in bipartite Rydberg arrays originating from hidden projector embedding, Phys. Rev. A 107, 023318 (2023).
- S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022).
- B. Buča, Unified theory of local quantum many-body dynamics: Eigenoperator thermalization theorems, Phys. Rev. X 13, 031013 (2023).
- T. Shirai and T. Mori, Thermalization in open many-body systems based on eigenstate thermalization hypothesis, Phys. Rev. E 101, 042116 (2020).
- Q. Chen, S. A. Chen, and Z. Zhu, Weak ergodicity breaking in non-Hermitian many-body systems, SciPost Phys. 15, 052 (2023a).
- S. Longhi, Probing non-Hermitian skin effect and non-Bloch phase transitions, Phys. Rev. Res. 1, 023013 (2019a).
- F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019).
- L. Li, C. H. Lee, and J. Gong, Topological switch for non-Hermitian skin effect in cold-atom systems with loss, Phys. Rev. Lett. 124, 250402 (2020).
- C. H. Lee, Many-body topological and skin states without open boundaries, Phys. Rev. B 104, 195102 (2021).
- L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free localization, Communications Physics 4, 1 (2021).
- L. Li and C. H. Lee, Non-Hermitian pseudo-gaps, Science Bulletin 67, 685 (2022).
- H. Jiang and C. H. Lee, Dimensional transmutation from non-hermiticity, Phys. Rev. Lett. 131, 076401 (2023).
- T. Tai and C. H. Lee, Zoology of non-Hermitian spectra and their graph topology, Phys. Rev. B 107, L220301 (2023).
- M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, A review on non-Hermitian skin effect, Advances in Physics: X 7, 2109431 (2022).
- Z. Lei, C. H. Lee, and L. Li, 𝒫𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-activated non-Hermitian skin modes, arXiv e-prints (2023), arXiv:2304.13955 [cond-mat.mes-hall] .
- F. Qin, R. Shen, and C. H. Lee, Non-Hermitian squeezed polarons, Phys. Rev. A 107, L010202 (2023a).
- B. Buca, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nature Communications 10, 1730 (2019).
- P. Fendley, K. Sengupta, and S. Sachdev, Competing density-wave orders in a one-dimensional hard-boson model, Phys. Rev. B 69, 075106 (2004).
- I. Lesanovsky and H. Katsura, Interacting Fibonacci anyons in a Rydberg gas, Phys. Rev. A 86, 041601 (2012).
- Supplementary Material.
- I. Mondragon-Shem, M. G. Vavilov, and I. Martin, Fate of quantum many-body scars in the presence of disorder, PRX Quantum 2, 030349 (2021a).
- S. Sachdev, K. Sengupta, and S. M. Girvin, Mott insulators in strong electric fields, Phys. Rev. B 66, 075128 (2002).
- K. Sengupta, Phases and dynamics of ultracold Bosons in a tilted optical lattice, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 425–458.
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- N. A. of Sciences Engineering and Medicine, Quantum Computing: Progress and Prospects, edited by E. Grumbling and M. Horowitz (The National Academies Press, Washington, DC, 2019).
- J. Preskill, Quantum computing 40 years later, in Feynman Lectures on Computation (CRC Press, 2023) pp. 193–244.
- J. M. Koh, T. Tai, and C. H. Lee, Observation of higher-order topological states on a quantum computer, arXiv e-prints (2023), arXiv:2303.02179 [cond-mat.str-el] .
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
- S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018).
- J. M. Koh, T. Tai, and C. H. Lee, Simulation of interaction-induced chiral topological dynamics on a digital quantum computer, Phys. Rev. Lett. 129, 140502 (2022b).
- N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars in disordered spin chains, Phys. Rev. Lett. 124, 180604 (2020).
- I. Mondragon-Shem, M. G. Vavilov, and I. Martin, Fate of quantum many-body scars in the presence of disorder, PRX Quantum 2, 030349 (2021b).
- K. Huang, Y. Wang, and X. Li, Stability of scar states in the two-dimensional PXP model against random disorder, Phys. Rev. B 104, 214305 (2021).
- G. Zhang and Z. Song, Quantum scars in spin- isotropic Heisenberg clusters, New Journal of Physics 25, 053025 (2023).
- Q. Chen and Z. Zhu, Inverting multiple quantum many-body scars via disorder, arXiv e-prints (2023), arXiv:2301.03405 [cond-mat.dis-nn] .
- M. Iversen and A. E. B. Nielsen, Tower of quantum scars in a partially many-body localized system, Phys. Rev. B 107, 205140 (2023).
- Q. Chen, S. A. Chen, and Z. Zhu, Weak ergodicity breaking in non-Hermitian many-body systems, SciPost Phys. 15, 052 (2023d).
- Z. Gong, R. Hamazaki, and M. Ueda, Discrete time-crystalline order in cavity and circuit QED systems, Phys. Rev. Lett. 120, 040404 (2018).
- K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13, 021007 (2023).
- J. Gliozzi, G. D. Tomasi, and T. L. Hughes, Many-body non-Hermitian skin effect for multipoles, arXiv e-prints (2024), arXiv:2401.04162 [cond-mat.str-el] .
- R. Hamazaki, K. Kawabata, and M. Ueda, Non-Hermitian many-body localization, Phys. Rev. Lett. 123, 090603 (2019).
- K. Kawabata, K. Shiozaki, and S. Ryu, Many-body topology of non-Hermitian systems, Phys. Rev. B 105, 165137 (2022).
- R. Shen and C. H. Lee, Non-Hermitian skin clusters from strong interactions, Communications Physics 5, 238 (2022).
- G. D. Tomasi and I. M. Khaymovich, Stable many-body localization under random continuous measurements in the no-click limit, arXiv e-prints (2023), arXiv:2311.00019 [cond-mat.dis-nn] .
- P. Weinberg and M. Bukov, QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems part I: spin chains, SciPost Phys. 2, 003 (2017).
- P. Weinberg and M. Bukov, QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems. Part II: bosons, fermions and higher spins, SciPost Phys. 7, 20 (2019).
- W. Heiss, The physics of exceptional points, Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
- S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122, 237601 (2019b).
- M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
- C. H. Lee, Exceptional bound states and negative entanglement entropy, Phys. Rev. Lett. 128, 010402 (2022).
- K. Ding, C. Fang, and G. Ma, Non-hermitian topology and exceptional-point geometries, Nature Reviews Physics 4, 745 (2022).
- M. Yang and C. H. Lee, Percolation-induced PT symmetry breaking, arXiv e-prints (2023), arXiv:2309.15008 [cond-mat.stat-mech] .
- H. Meng, Y. S. Ang, and C. H. Lee, Exceptional points in non-Hermitian systems: Applications and recent developments, Applied Physics Letters 124, 060502 (2024).
- T. Orito and K.-I. Imura, Entanglement dynamics in the many-body Hatano-Nelson model, Phys. Rev. B 108, 214308 (2023).
- C.-T. Hsieh and P.-Y. Chang, Relating non-Hermitian and Hermitian quantum systems at criticality, SciPost Phys. Core 6, 062 (2023).
- M. Fossati, F. Ares, and P. Calabrese, Symmetry-resolved entanglement in critical non-Hermitian systems, Phys. Rev. B 107, 205153 (2023).
- F. Rottoli, M. Fossati, and P. Calabrese, Entanglement Hamiltonian in the non-Hermitian SSH model, arXiv e-prints (2024), arXiv:2402.04776 [quant-ph] .