Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhanced many-body quantum scars from the non-Hermitian Fock skin effect (2403.02395v2)

Published 4 Mar 2024 in cond-mat.quant-gas and quant-ph

Abstract: In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically-constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates, the non-Hermitian analogs of quantum many-body scars. A distinguishing feature of these non-Hermitian scars is their enhanced robustness against external disorders. We propose an experimental realization of the non-Hermitian scar enhancement in a tilted Bose-Hubbard optical lattice with laser-induced loss. Additionally, we implement digital simulations of such scar enhancement on the IBM quantum processor. Our results show that the Fock skin effect provides a powerful tool for creating robust non-ergodic states in generic open quantum systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).
  2. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  3. M. Rigol, Breakdown of thermalization in finite one-dimensional systems, Phys. Rev. Lett. 103, 100403 (2009).
  4. M. C. Bañuls, J. I. Cirac, and M. B. Hastings, Strong and weak thermalization of infinite nonintegrable quantum systems, Phys. Rev. Lett. 106, 050405 (2011).
  5. J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on Progress in Physics 81, 082001 (2018).
  6. K. Mallayya, M. Rigol, and W. De Roeck, Prethermalization and thermalization in isolated quantum systems, Phys. Rev. X 9, 021027 (2019).
  7. J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).
  8. A. Dymarsky, N. Lashkari, and H. Liu, Subsystem eigenstate thermalization hypothesis, Phys. Rev. E 97, 012140 (2018).
  9. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  10. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
  11. B. Sutherland, Beautiful models: 70 years of exactly solved quantum many-body problems (World Scientific Publishing Company, 2004).
  12. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annual Review of Condensed Matter Physics 6, 15 (2015).
  13. M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 XY magnets, Phys. Rev. Lett. 123, 147201 (2019).
  14. D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the Affleck-Kennedy-Lieb-Tasaki and other models, Phys. Rev. B 101, 195131 (2020).
  15. K. Omiya and M. Müller, Quantum many-body scars in bipartite Rydberg arrays originating from hidden projector embedding, Phys. Rev. A 107, 023318 (2023).
  16. S. Moudgalya and O. I. Motrunich, Hilbert space fragmentation and commutant algebras, Phys. Rev. X 12, 011050 (2022).
  17. B. Buča, Unified theory of local quantum many-body dynamics: Eigenoperator thermalization theorems, Phys. Rev. X 13, 031013 (2023).
  18. T. Shirai and T. Mori, Thermalization in open many-body systems based on eigenstate thermalization hypothesis, Phys. Rev. E 101, 042116 (2020).
  19. Q. Chen, S. A. Chen, and Z. Zhu, Weak ergodicity breaking in non-Hermitian many-body systems, SciPost Phys. 15, 052 (2023a).
  20. S. Longhi, Probing non-Hermitian skin effect and non-Bloch phase transitions, Phys. Rev. Res. 1, 023013 (2019a).
  21. F. Song, S. Yao, and Z. Wang, Non-Hermitian skin effect and chiral damping in open quantum systems, Phys. Rev. Lett. 123, 170401 (2019).
  22. L. Li, C. H. Lee, and J. Gong, Topological switch for non-Hermitian skin effect in cold-atom systems with loss, Phys. Rev. Lett. 124, 250402 (2020).
  23. C. H. Lee, Many-body topological and skin states without open boundaries, Phys. Rev. B 104, 195102 (2021).
  24. L. Li, C. H. Lee, and J. Gong, Impurity induced scale-free localization, Communications Physics 4, 1 (2021).
  25. L. Li and C. H. Lee, Non-Hermitian pseudo-gaps, Science Bulletin 67, 685 (2022).
  26. H. Jiang and C. H. Lee, Dimensional transmutation from non-hermiticity, Phys. Rev. Lett. 131, 076401 (2023).
  27. T. Tai and C. H. Lee, Zoology of non-Hermitian spectra and their graph topology, Phys. Rev. B 107, L220301 (2023).
  28. M.-H. L. Xiujuan Zhang, Tian Zhang and Y.-F. Chen, A review on non-Hermitian skin effect, Advances in Physics: X 7, 2109431 (2022).
  29. Z. Lei, C. H. Lee, and L. Li, 𝒫⁢𝒯𝒫𝒯\mathcal{PT}caligraphic_P caligraphic_T-activated non-Hermitian skin modes, arXiv e-prints  (2023), arXiv:2304.13955 [cond-mat.mes-hall] .
  30. F. Qin, R. Shen, and C. H. Lee, Non-Hermitian squeezed polarons, Phys. Rev. A 107, L010202 (2023a).
  31. B. Buca, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nature Communications 10, 1730 (2019).
  32. P. Fendley, K. Sengupta, and S. Sachdev, Competing density-wave orders in a one-dimensional hard-boson model, Phys. Rev. B 69, 075106 (2004).
  33. I. Lesanovsky and H. Katsura, Interacting Fibonacci anyons in a Rydberg gas, Phys. Rev. A 86, 041601 (2012).
  34. Supplementary Material.
  35. I. Mondragon-Shem, M. G. Vavilov, and I. Martin, Fate of quantum many-body scars in the presence of disorder, PRX Quantum 2, 030349 (2021a).
  36. S. Sachdev, K. Sengupta, and S. M. Girvin, Mott insulators in strong electric fields, Phys. Rev. B 66, 075128 (2002).
  37. K. Sengupta, Phases and dynamics of ultracold Bosons in a tilted optical lattice, in Entanglement in Spin Chains: From Theory to Quantum Technology Applications, edited by A. Bayat, S. Bose, and H. Johannesson (Springer International Publishing, Cham, 2022) pp. 425–458.
  38. J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
  39. N. A. of Sciences Engineering and Medicine, Quantum Computing: Progress and Prospects, edited by E. Grumbling and M. Horowitz (The National Academies Press, Washington, DC, 2019).
  40. J. Preskill, Quantum computing 40 years later, in Feynman Lectures on Computation (CRC Press, 2023) pp. 193–244.
  41. J. M. Koh, T. Tai, and C. H. Lee, Observation of higher-order topological states on a quantum computer, arXiv e-prints  (2023), arXiv:2303.02179 [cond-mat.str-el] .
  42. K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
  43. S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018).
  44. J. M. Koh, T. Tai, and C. H. Lee, Simulation of interaction-induced chiral topological dynamics on a digital quantum computer, Phys. Rev. Lett. 129, 140502 (2022b).
  45. N. Shibata, N. Yoshioka, and H. Katsura, Onsager’s scars in disordered spin chains, Phys. Rev. Lett. 124, 180604 (2020).
  46. I. Mondragon-Shem, M. G. Vavilov, and I. Martin, Fate of quantum many-body scars in the presence of disorder, PRX Quantum 2, 030349 (2021b).
  47. K. Huang, Y. Wang, and X. Li, Stability of scar states in the two-dimensional PXP model against random disorder, Phys. Rev. B 104, 214305 (2021).
  48. G. Zhang and Z. Song, Quantum scars in spin- isotropic Heisenberg clusters, New Journal of Physics 25, 053025 (2023).
  49. Q. Chen and Z. Zhu, Inverting multiple quantum many-body scars via disorder, arXiv e-prints  (2023), arXiv:2301.03405 [cond-mat.dis-nn] .
  50. M. Iversen and A. E. B. Nielsen, Tower of quantum scars in a partially many-body localized system, Phys. Rev. B 107, 205140 (2023).
  51. Q. Chen, S. A. Chen, and Z. Zhu, Weak ergodicity breaking in non-Hermitian many-body systems, SciPost Phys. 15, 052 (2023d).
  52. Z. Gong, R. Hamazaki, and M. Ueda, Discrete time-crystalline order in cavity and circuit QED systems, Phys. Rev. Lett. 120, 040404 (2018).
  53. K. Kawabata, T. Numasawa, and S. Ryu, Entanglement phase transition induced by the non-Hermitian skin effect, Phys. Rev. X 13, 021007 (2023).
  54. J. Gliozzi, G. D. Tomasi, and T. L. Hughes, Many-body non-Hermitian skin effect for multipoles, arXiv e-prints  (2024), arXiv:2401.04162 [cond-mat.str-el] .
  55. R. Hamazaki, K. Kawabata, and M. Ueda, Non-Hermitian many-body localization, Phys. Rev. Lett. 123, 090603 (2019).
  56. K. Kawabata, K. Shiozaki, and S. Ryu, Many-body topology of non-Hermitian systems, Phys. Rev. B 105, 165137 (2022).
  57. R. Shen and C. H. Lee, Non-Hermitian skin clusters from strong interactions, Communications Physics 5, 238 (2022).
  58. G. D. Tomasi and I. M. Khaymovich, Stable many-body localization under random continuous measurements in the no-click limit, arXiv e-prints  (2023), arXiv:2311.00019 [cond-mat.dis-nn] .
  59. P. Weinberg and M. Bukov, QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems part I: spin chains, SciPost Phys. 2, 003 (2017).
  60. P. Weinberg and M. Bukov, QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems. Part II: bosons, fermions and higher spins, SciPost Phys. 7, 20 (2019).
  61. W. Heiss, The physics of exceptional points, Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).
  62. S. Longhi, Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122, 237601 (2019b).
  63. M.-A. Miri and A. Alù, Exceptional points in optics and photonics, Science 363, eaar7709 (2019).
  64. C. H. Lee, Exceptional bound states and negative entanglement entropy, Phys. Rev. Lett. 128, 010402 (2022).
  65. K. Ding, C. Fang, and G. Ma, Non-hermitian topology and exceptional-point geometries, Nature Reviews Physics 4, 745 (2022).
  66. M. Yang and C. H. Lee, Percolation-induced PT symmetry breaking, arXiv e-prints  (2023), arXiv:2309.15008 [cond-mat.stat-mech] .
  67. H. Meng, Y. S. Ang, and C. H. Lee, Exceptional points in non-Hermitian systems: Applications and recent developments, Applied Physics Letters 124, 060502 (2024).
  68. T. Orito and K.-I. Imura, Entanglement dynamics in the many-body Hatano-Nelson model, Phys. Rev. B 108, 214308 (2023).
  69. C.-T. Hsieh and P.-Y. Chang, Relating non-Hermitian and Hermitian quantum systems at criticality, SciPost Phys. Core 6, 062 (2023).
  70. M. Fossati, F. Ares, and P. Calabrese, Symmetry-resolved entanglement in critical non-Hermitian systems, Phys. Rev. B 107, 205153 (2023).
  71. F. Rottoli, M. Fossati, and P. Calabrese, Entanglement Hamiltonian in the non-Hermitian SSH model, arXiv e-prints  (2024), arXiv:2402.04776 [quant-ph] .
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com