Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Hybrid Feature Importance and Feature Interaction Detection Framework for Predictive Optimization in Industry 4.0 Applications (2403.02368v1)

Published 4 Mar 2024 in cs.LG and cs.AI

Abstract: Advanced machine learning algorithms are increasingly utilized to provide data-based prediction and decision-making support in Industry 4.0. However, the prediction accuracy achieved by the existing models is insufficient to warrant practical implementation in real-world applications. This is because not all features present in real-world datasets possess a direct relevance to the predictive analysis being conducted. Consequently, the careful incorporation of select features has the potential to yield a substantial positive impact on the outcome. To address the research gap, this paper proposes a novel hybrid framework that combines the feature importance detector - local interpretable model-agnostic explanations (LIME) and the feature interaction detector - neural interaction detection (NID), to improve prediction accuracy. By applying the proposed framework, unnecessary features can be eliminated, and interactions are encoded to generate a more conducive dataset for predictive purposes. Subsequently, the proposed model is deployed to refine the prediction of electricity consumption in foundry processing. The experimental outcomes reveal an augmentation of up to 9.56% in the R2 score, and a diminution of up to 24.05% in the root mean square error.

Citations (1)

Summary

We haven't generated a summary for this paper yet.