Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the integrality of étale extensions of polynomial rings (2403.02219v2)

Published 4 Mar 2024 in math.AG and math.AC

Abstract: Motivated by a valuation theorem, recently obtained by Rangachev, we study the \'etale extensions $A\subset B$ of polynomial rings over an algebraically closed field of characteristic zero, such that the integral closure $\overline{A}$ is a primary $\overline{A}$-submodule of $B$. We prove that in this case $\overline{A}$ has infinite cyclic divisor class group, where the generator is a prime divisor equal to the complement of $\textrm{Spec}(B)$ in $\textrm{Spec}(\overline{A})$. Moreover, this prime divisor coincides with the ramification divisor of the finite extension $A\subset \overline{A}$. In this situation we carry out Wright's geometric approach for two-dimensional non-integral \'etale extensions. It follows from the work of Miyanishi that $\textrm{Spec}(\overline{A})$ is a smooth affine surface. We show that $\textrm{Spec}(\overline{A})$ is an $\mathbb{A}{1}$-bundle over $\mathbb{P}{1}$, more precisely a Danilov-Gizatullin surface of index three. Based on Wright's analysis of which of these affine surfaces can factorize an \'etale morphism of the complex affine plane and his description of its affine coordinate rings, we prove that under the strong assumption that $\overline{A}$ is always a primary $\overline{A}$-submodule of $B$, any two-dimensional complex \'etale extension is integral.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. G. Angermüller. On some conditions for a polynomial map with constant Jacobian to be invertible. Arch. Math. (Basel), 40(5):415–420, 1983.
  2. P. Cassou-Noguès and P. Russell. Birational morphisms ℂ2→ℂ2→superscriptℂ2superscriptℂ2\mathbb{C}^{2}\to\mathbb{C}^{2}blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT → blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and affine ruled surfaces. In Affine algebraic geometry, pages 57–105. Osaka Univ. Press, Osaka, 2007.
  3. Automorphisms of affine surfaces. II. Izv. Akad. Nauk SSSR Ser. Mat., 41(1):54–103, 231, 1977.
  4. T. J. Ford. Separable algebras, volume 183 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2017.
  5. R. Gilmer. Multiplicative ideal theory, volume 90 of Queen’s Papers in Pure and Applied Mathematics. Queen’s University, Kingston, ON, 1992. Corrected reprint of the 1972 edition.
  6. Affine lines on affine surfaces and the Makar-Limanov invariant. Canad. J. Math., 60(1):109–139, 2008.
  7. R. V. Gurjar and M. Miyanishi. The Jacobian problem for singular surfaces. J. Math. Kyoto Univ., 48(4):757–764, 2008.
  8. R. Hartshorne. Algebraic geometry, volume No. 52 of Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977.
  9. S. Iitaka. Algebraic geometry. An introduction to birational geometry of algebraic varieties, volume 76 of Grad. Texts Math. Springer, Cham, 1982.
  10. S. Lefschetz. Algebraic geometry. Princeton University Press, Princeton, NJ, 1953.
  11. H. Matsumura. Commutative algebra, volume 56 of Mathematics Lecture Note Series. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., second edition, 1980.
  12. M. Miyanishi. Curves on rational and unirational surfaces, volume 60 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay; Narosa Publishing House, New Delhi, 1978.
  13. M. Miyanishi. Noncomplete algebraic surfaces, volume 857 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1981.
  14. A. Rangachev. A valuation theorem for Noetherian rings. Michigan Math. J., 73(4):843–851, 2023.
  15. M. Raynaud. Anneaux locaux henséliens. Lecture Notes in Mathematics, Vol. 169. Springer-Verlag, Berlin-New York, 1970.
  16. S. S. S. Wang. A Jacobian criterion for separability. J. Algebra, 65(2):453–494, 1980.
  17. D. Wright. On the Jacobian conjecture. Illinois J. Math., 25(3):423–440, 1981.
  18. D. Wright. Affine surfaces fibered by affine lines over the projective line. Illinois J. Math., 41(4):589–605, 1997.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com