Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis on aggregation and block smoothers in multigrid methods for block Toeplitz linear systems (2403.02139v1)

Published 4 Mar 2024 in math.NA and cs.NA

Abstract: We present novel improvements in the context of symbol-based multigrid procedures for solving large block structured linear systems. We study the application of an aggregation-based grid transfer operator that transforms the symbol of a block Toeplitz matrix from matrix-valued to scalar-valued at the coarser level. Our convergence analysis of the Two-Grid Method (TGM) reveals the connection between the features of the scalar-valued symbol at the coarser level and the properties of the original matrix-valued one. This allows us to prove the convergence of a V-cycle multigrid with standard grid transfer operators for scalar Toeplitz systems at the coarser levels. Consequently, we extend the class of suitable smoothers for block Toeplitz matrices, focusing on the efficiency of block strategies, particularly the relaxed block Jacobi method. General conditions on smoothing parameters are derived, with emphasis on practical applications where these parameters can be calculated with negligible computational cost. We test the proposed strategies on linear systems stemming from the discretization of differential problems with $\mathbb{Q}_{d} $ Lagrangian FEM or B-spline with non-maximal regularity. The numerical results show in both cases computational advantages compared to existing methods for block structured linear systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. Aricò and M. Donatelli. A V-cycle multigrid for multilevel matrix algebras: proof of optimality. Numer. Math., 105(4):511–547, 2007.
  2. V-cycle optimal convergence for certain (multilevel) structured linear systems. SIAM J. Matrix Anal. Appl., 26(1):186–214, 2004.
  3. A symbol-based analysis for multigrid methods for block-circulant and block-Toeplitz systems. SIAM J. Matrix Anal. Appl., 43(1):405–438, 2022.
  4. Symbol based convergence analysis in block multigrid methods with applications for Stokes problems. Appl. Numer. Math., 193:109–130, 2023.
  5. Symbol based convergence analysis in multigrid methods for saddle point problems. Linear Algebra Appl., 671:67–108, 2023.
  6. Analysis of smoothed aggregation multigrid methods based on Toeplitz matrices. Electron. Trans. Numer. Anal., 44:25–52, 2015.
  7. D. Braess. Towards algebraic multigrid for elliptic problems of second order. Computing, 55(4):379–393, 1995.
  8. Adaptive smoothed aggregation (α⁢SA)𝛼SA(\alpha{\rm SA})( italic_α roman_SA ) multigrid. SIAM Rev., 47(2):317–346, 2005.
  9. Z.-H. Cao. On the convergence of general stationary linear iterative methods for singular linear systems. SIAM J. Matrix Anal. Appl., 29(4):1382–1388, 2007.
  10. Multigrid method for ill-conditioned symmetric Toeplitz systems. SIAM J. Sci. Comput., 19(2):516–529, 1998.
  11. A. Chengtao and S. Yangfeng. An aggregation-based two-grid method for multilevel block toeplitz linear systems. Journal of Scientific Computing, 98(3), 2024.
  12. Automatic coarsening in algebraic multigrid utilizing quality measures for matching-based aggregations. Comput. Math. Appl., 144:290–305, 2023.
  13. P. D’Ambra and P. S. Vassilevski. Adaptive AMG with coarsening based on compatible weighted matching. Comput. Vis. Sci., 16(2):59–76, 2013.
  14. Multigrid methods for block-Toeplitz linear systems: convergence analysis and applications. Numer. Linear Algebra Appl., 28(4):Paper No. e2356, 20, 2021.
  15. On generalizing the algebraic multigrid framework. SIAM J. Numer. Anal., 42(4):1669–1693, 2004.
  16. On two-grid convergence estimates. Numer. Linear Algebra Appl., 12(5-6):471–494, 2005.
  17. Multigrid for ℚksubscriptℚ𝑘\mathbb{Q}_{k}blackboard_Q start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT finite element matrices using a (block) Toeplitz symbol approach. Mathematics, 8(5), 2020.
  18. Spectral analysis and spectral symbol of d𝑑ditalic_d-variate ℚpsubscriptℚ𝑝\mathbb{Q}_{p}blackboard_Q start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT Lagrangian FEM stiffness matrices. SIAM J. Matrix Anal. Appl., 36(3):1100–1128, 2015.
  19. Symbol-based analysis of finite element and isogeometric B-spline discretizations of eigenvalue problems: exposition and review. Arch. Comput. Methods Eng., 26(5):1639–1690, 2019.
  20. T. Huckle and J. Staudacher. Multigrid methods for block Toeplitz matrices with small size blocks. BIT, 46(1):61–83, 2006.
  21. T. K. Huckle. Compact fourier analysis for designing multigrid methods. SIAM Journal on Scientific Computing, 31(1):644–666, 2008.
  22. A. C. Muresan and Y. Notay. Analysis of aggregation-based multigrid. SIAM J. Sci. Comput., 30(2):1082–1103, 2008.
  23. J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, volume 3 of Frontiers Appl. Math., pages 73–130. SIAM, Philadelphia, PA, 1987.
  24. K. Stüben. A review of algebraic multigrid. volume 128, pages 281–309. 2001. Numerical analysis 2000, Vol. VII, Partial differential equations.
  25. O. Tatebe. The multigrid preconditioned conjugate gradient method. In NASA. Langley Research Center, The Sixth Copper Mountain Conference on Multigrid Methods, Part 2, pages 621–634, 1993.
  26. Multigrid. Academic Press, Inc., San Diego, CA, 2001. With contributions by A. Brandt, P. Oswald and K. Stüben.

Summary

We haven't generated a summary for this paper yet.