Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homotopy Methods for Convex Optimization (2403.02095v1)

Published 4 Mar 2024 in math.OC, cs.NA, math.AG, and math.NA

Abstract: Convex optimization encompasses a wide range of optimization problems, containing many efficiently solvable subclasses. Interior point methods are currently the state-of-the-art approach for solving such problems, particularly effective for classes like semidefinite programming, quadratic programming, and geometric programming. However, their success hinges on the construction of self-concordant barrier functions for the feasible sets. In this work, we introduce an alternative method for tackling convex optimization problems, employing a homotopy. With this technique, the feasible set of a trivial optimization problem is continuously transformed into the target one, while tracking the solutions. We conduct an analysis of this approach, focusing on its application to semidefinite programs, hyperbolic programs, and convex optimization problems with a single convexity constraint. Moreover, we demonstrate that our approach numerically outperforms state-of-the-art methods in several interesting cases.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A rewriting system for convex optimization problems. J. Control Decis., 5(1):42–60, 2018. doi:10.1080/23307706.2017.1397554.
  2. M. ApS. The MOSEK optimization toolbox for Python manual. Version 9.3, 2019. url: https://docs.mosek.com/9.3/pythonapi/index.html.
  3. F. Barahona. On the computational complexity of ising spin glass models. J. Phys. A: Math. Gen., 15:3241–3253, 1982. doi:10.1088/0305-4470/15/10/028.
  4. J. Borcea and P. Brändén. Hyperbolicity preservers and majorization. C. R. Math. Acad. Sci. Paris, 348(15-16):843–846, 2010. doi:j.crma.2010.07.006.
  5. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. doi:10.1017/CBO9780511804441.
  6. P. Breiding and S. Timme. HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia. In International Congress on Mathematical Software, pages 458–465. Springer, 2018. doi:10.48550/arXiv.1711.10911.
  7. P. Brändén. Hyperbolicity cones of elementary symmetric polynomials are spectrahedral. Optim. Lett., 8:1773–1782, 2014. doi:10.1007/s11590-013-0694-6.
  8. S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. J. Mach. Learn. Res., 17(83):1–5, 2016. doi:10.48550/arXiv.1603.00943.
  9. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science, 292:472–475, 2001. doi:10.1126/science.1057726.
  10. L. Gårding. An inequality for hyperbolic polynomials. Journal of Mathematics and Mechanics, pages 957–965, 1959.
  11. What is numerical algebraic geometry? J. Symb. Comput., 79:499–507, 2017. doi:10.1016/j.jsc.2016.07.015.
  12. Numerical algebraic geometry and semidefinite programming. Results Appl. Math., 11:100166, 2021. doi:10.1016/j.rinam.2021.100166.
  13. J.-H. He. Homotopy perturbation technique. Comput. Methods Appl. Mech. Engrg., 178:257–262, 1999. doi:10.1016/S0045-7825(99)00018-3.
  14. J. W. Helton and J. Nie. Semidefinite representation of convex sets. Math. Program., 122:21–64, 2010. doi:10.1007/s10107-008-0240-y.
  15. Exact algorithms for semidefinite programs with degenerate feasible set. J. Symb. Comput., 104:942–959, 2021. doi:10.1016/j.jsc.2020.11.001.
  16. The lax conjecture is true. Proc. Amer. Math. Soc., 133(9):2495–2499, 2005. doi:10.1090/S0002-9939-05-07752-X.
  17. S. Liao. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD thesis, Shanghai Jiao Tong University, 1992.
  18. S. Liao. Beyond Perturbation. Chapman and Hall/CRC, 2003. doi:10.1201/9780203491164.
  19. S.-J. Liao. An explicit, totally analytic approximate solution for blasius’ viscous flow problems. Int. J. Non-Linear Mech., 34:759–778, 1999. doi:10.1016/S0020-7462(98)00056-0.
  20. A. Lucas. Ising formulations of many NP problems. Front. Phys., 2, 2014. doi:10.3389/fphy.2014.00005.
  21. Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Programming. SIAM, 1994. ISBN 978-0-89871-319-0. doi:10.1137/1.9781611970791.
  22. T. Netzer. Spectrahedra and Their Shadowy. Habilitation Thesis, 2011. url: https://www.uibk.ac.at/mathematik/algebra/media/tim-netzer/habilitationsschrift.pdf.
  23. T. Netzer and D. Plaumann. Geometry of Linear Matrix Inequalities: A Course in Convexity and Real Algebraic Geometry with a View Towards Optimization. Springer Nature, 2023. doi:10.1007/978-3-031-26455-9.
  24. T. Netzer and R. Sanyal. Smooth hyperbolicity cones are spectrahedral shadows. Math. Program., 153(1):213–221, 2015. doi:10.1007/s10107-014-0744-6.
  25. Semidefinite representation of the k-ellipse. IMA Volumes in Mathematics and its Applications, 146:117–132, 2008. doi:10.1007/978-0-387-75155-9_7.
  26. W. Nuij. A note on hyperbolic polynomials. Math. Scand., 23(1):69–72, 1968. doi:10.7146/math.scand.a-10898.
  27. R. Oliveira. Conditional lower bounds on the spectrahedral representation of explicit hyperbolicity cones. In International Symposium on Symbolic and Algebraic Computation, pages 396–401. ACM, New York, 2020. doi:10.1145/3373207.3404010.
  28. S. T. Paul Breiding. The point on a variety that minimizes the distance to a given point, 2019. url: https://www.JuliaHomotopyContinuation.org/examples/critical-points/. Accessed: December 19, 2023.
  29. Exponential lower bounds on spectrahedral representations of hyperbolicity cones. In ACM-SIAM Symposium on Discrete Algorithms, pages 2322–2332, 2019. doi:10.1137/1.9781611975482.141.
  30. J. Renegar. Hyperbolic programs, and their derivative relaxations. FoCM, 6:59–79, 2006. doi:10.1007/s10208-004-0136-z.
  31. Numerical algebraic geometry. Lectures in Applied Mathematics-American Mathematical Society, 32:749–764, 1996.
  32. Introduction to numerical algebraic geometry, pages 301–337. Springer-Verlag, 2005. doi:10.1007/3-540-27357-3_8.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com