Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the accuracy of the Newmark method through backward error analysis (2403.02029v3)

Published 4 Mar 2024 in math.NA and cs.NA

Abstract: We use backward error analysis for differential equations to obtain modified or distorted equations describing the behaviour of the Newmark scheme applied to the transient structural dynamics equation. Based on the newly derived distorted equations, we give expressions for the numerically or algorithmically distorted stiffness and damping matrices of a system simulated using the Newmark scheme. Using these results, we show how to construct compensation terms from the original parameters of the system, which improve the performance of Newmark simulations. The required compensation terms turn out to be slight modifications to the original system parameters (e.g. the damping or stiffness matrices), and can be applied without changing the time step or modifying the scheme itself. Two such compensations are given: one eliminates numerical damping, while the other achieves fourth-order accurate calculations using the traditionally second-order Newmark method. The performance of both compensation methods is evaluated numerically to demonstrate their validity, and they are compared to the uncompensated Newmark method, the generalized-$\alpha$ method and the 4th-order Runge--Kutta scheme.

Citations (1)

Summary

We haven't generated a summary for this paper yet.