Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dagger $n$-categories (2403.01651v2)

Published 4 Mar 2024 in math.CT, math-ph, math.AT, math.MP, and math.QA

Abstract: We present a coherent definition of dagger $(\infty,n)$-category in terms of equivariance data trivialized on parts of the category. Our main example is the bordism higher category $\mathbf{Bord}{n}X$. This allows us to define a reflection-positive topological quantum field theory to be a higher dagger functor from $\mathbf{Bord}{n}X$ to some target higher dagger category $\mathcal{C}$. Our definitions have a tunable parameter: a group $G$ acting on the $(\infty,1)$-category $\mathbf{Cat}{(\infty,n)}$ of $(\infty,n)$-categories. Different choices for $G$ accommodate different flavours of higher dagger structure; the universal choice is $G = \operatorname{Aut}(\mathbf{Cat}{(\infty,n)}) = (\mathbb{Z}/2\mathbb{Z})n$, which implements dagger involutions on all levels of morphisms. The Stratified Cobordism Hypothesis suggests that there should be a map $\mathrm{PL}(n) \to \operatorname{Aut}(\mathbf{AdjCat}{(\infty,n)})$, where $\mathrm{PL}(n)$ is the group of piecewise-linear automorphisms of $\mathbb{R}n$ and $\mathbf{AdjCat}{(\infty,n)}$ the $(\infty,1)$-category of $(\infty,n)$-categories with all adjoints; we conjecture more strongly that $\operatorname{Aut}(\mathbf{AdjCat}{(\infty,n)}) \cong \mathrm{PL}(n)$. Based on this conjecture we propose a notion of dagger $(\infty,n)$-category with unitary duality or $\mathrm{PL}(n)$-dagger category. We outline how to construct a $\mathrm{PL}(n)$-dagger structure on the fully-extended bordism $(\infty,n)$-category $\mathbf{Bord}_nX$ for any stable tangential structure $X$; our outline restricts to a rigorous construction of a coherent dagger structure on the unextended bordism $(\infty,1)$-category $\mathbf{Bord}{n,n-1}X$. The article is a report on the results of a workshop held in Summer 2023, and is intended as a sketch of the big picture and an invitation for more thorough development.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (52)
  1. Omar Antolín Camarena. A whirlwind tour of the world of (∞,1)1(\infty,1)( ∞ , 1 )-categories. In Mexican mathematicians abroad: recent contributions, volume 657 of Contemp. Math., pages 15–61. Amer. Math. Soc., Providence, RI, 2016.
  2. Flagged higher categories. In Topology and quantum theory in interaction, volume 718 of Contemp. Math., pages 137–173. Amer. Math. Soc., [Providence], RI, [2018] ©2018.
  3. Michael Atiyah. Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math., (68):175–186, 1988.
  4. John Baez. Quantum quandaries: a category-theoretic perspective. In The structural foundations of quantum gravity, pages 240–265. Oxford Univ. Press, Oxford, 2006.
  5. Bruce Bartlett. On unitary 2-representations of finite groups and topological quantum field theory. PhD thesis, University of Sheffield, 2009.
  6. Higher-dimensional algebra and topological quantum field theory. J. Math. Phys., 36(11):6073–6105, 1995.
  7. Indice d’une espérance conditionnelle. Compositio Math., 66(2):199–236, 1988.
  8. Dualizability and index of subfactors. Quantum Topol., 5(3):289–345, 2014.
  9. Julia E. Bergner. A survey of (∞,1)1(\infty,1)( ∞ , 1 )-categories. In Towards higher categories, volume 152 of IMA Vol. Math. Appl., pages 69–83. Springer, New York, 2010.
  10. Comparison of models for (∞,n)𝑛(\infty,n)( ∞ , italic_n )-categories, I. Geom. Topol., 17(4):2163–2202, 2013.
  11. Comparison of models for (∞,n)𝑛(\infty,n)( ∞ , italic_n )-categories, II. J. Topol., 13(4):1554–1581, 2020.
  12. On the unicity of the theory of higher categories. J. Amer. Math. Soc., 34(4):1011–1058, 2021.
  13. Manifestly unitary higher Hilbert spaces. expected 2024.
  14. Q-system completion for C*superscriptC\rm C^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT 2-categories. J. Funct. Anal., 283(3):Paper No. 109524, 59, 2022.
  15. 3-dimensional defect TQFTs and their tricategories. Adv. Math., 364:107024, 58, 2020.
  16. Alain Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.
  17. A note on the (∞,n)𝑛(\infty,n)( ∞ , italic_n )-category of cobordisms. Algebr. Geom. Topol., 19(2):533–655, 2019.
  18. Field theories with defects and the centre functor. In Mathematical foundations of quantum field theory and perturbative string theory, volume 83 of Proc. Sympos. Pure Math., pages 71–128. Amer. Math. Soc., Providence, RI, 2011.
  19. A new duality theory for compact groups. Invent. Math., 98(1):157–218, 1989.
  20. J. M. Egger. On involutive monoidal categories. Theory Appl. Categ., 25:No. 14, 368–393, 2011.
  21. Reflection positivity and invertible topological phases. Geom. Topol., 25(3):1165–1330, 2021.
  22. Quantum groups, quantum categories and quantum field theory, volume 1542 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.
  23. String-net models for pivotal bicategories. arXiv preprint arXiv:2302.01468, 2023.
  24. Enriched ∞\infty∞-categories via non-symmetric ∞\infty∞-operads. Adv. Math., 279:575–716, 2015.
  25. W∗superscript𝑊∗W^{\ast}italic_W start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-categories. Pacific J. Math., 120(1):79–109, 1985.
  26. André G. Henriques. Are dagger categories truly evil? MathOverflow, 2015. https://mathoverflow.net/q/220032.
  27. André G. Henriques. What Chern-Simons theory assigns to a point. Proc. Natl. Acad. Sci. USA, 114(51):13418–13423, 2017.
  28. Simon Henry. (n,1)𝑛1(n,1)( italic_n , 1 )-dagger categories. MathOverflow, 2022. https://mathoverflow.net/q/427322.
  29. Monads on dagger categories. Theory Appl. Categ., 31:Paper No. 35, 1016–1043, 2016.
  30. Limits in dagger categories. Theory Appl. Categ., 34:468–513, 2019.
  31. Bicommutant categories from fusion categories. Selecta Math. (N.S.), 23(3):1669–1708, 2017.
  32. (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories. Adv. Math., 307:147–223, 2017.
  33. Operator algebras in rigid C*superscriptC\rm C^{*}roman_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-tensor categories. Comm. Math. Phys., 355(3):1121–1188, 2017.
  34. Martti Karvonen. The Way of the Dagger. PhD thesis, University of Edinburgh, 2018.
  35. Foundational essays on topological manifolds, smoothings, and triangulations, volume No. 88 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah.
  36. R. Longo and J. E. Roberts. A theory of dimension. K𝐾Kitalic_K-Theory, 11(2):103–159, 1997.
  37. Jacob Lurie. Lecture notes on topics in geometric topology. https://www.math.ias.edu/~lurie/937.html, 2009.
  38. Jacob Lurie. On the classification of topological field theories. In Current developments in mathematics, 2008, pages 129–280. Int. Press, Somerville, MA, 2009.
  39. Michael Müger. From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories. J. Pure Appl. Algebra, 180(1-2):81–157, 2003.
  40. Saunders Mac Lane. An algebra of additive relations. Proc. Nat. Acad. Sci. U.S.A., 47:1043–1051, 1961.
  41. David Penneys. Unitary dual functors for unitary multitensor categories. High. Struct., 4(2):22–56, 2020.
  42. Dieter Puppe. Korrespondenzen in abelschen Kategorien. Math. Ann., 148:1–30, 1962.
  43. Jean-Luc Sauvageot. Sur le produit tensoriel relatif d’espaces de Hilbert. J. Operator Theory, 9(2):237–252, 1983.
  44. Peter Selinger. Dagger compact closed categories and completely positive maps: (extended abstract). Electronic Notes in Theoretical Computer Science, 170:139–163, 2007. Proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005).
  45. P. Selinger. A survey of graphical languages for monoidal categories. In New structures for physics, volume 813 of Lecture Notes in Phys., pages 289–355. Springer, Heidelberg, 2011.
  46. Priyaa Varshinee Srinivasan. Dagger Linear Logic and Categorical Quantum Mechanics. PhD thesis, University of Calgary, 2021.
  47. Dagger categories via anti-involutions and positivity. arXiv preprint arXiv:2304.02928, 2023.
  48. Luuk Stehouwer. Unitary fermionic topological field theory. PhD thesis, University of Bonn, 2024.
  49. Bertrand Toën. Vers une axiomatisation de la théorie des catégories supérieures. K𝐾Kitalic_K-Theory, 34(3):233–263, 2005.
  50. Monoidal categories and topological field theory, volume 322 of Progress in Mathematics. Birkhäuser/Springer, Cham, 2017.
  51. Hans Wenzl. C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT tensor categories from quantum groups. J. Amer. Math. Soc., 11(2):261–282, 1998.
  52. Shigeru Yamagami. Frobenius duality in C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-tensor categories. J. Operator Theory, 52(1):3–20, 2004.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com