Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonreciprocal recovery of electromagnetically induced transparency by wavenumber mismatch in hot atoms (2403.01553v1)

Published 3 Mar 2024 in quant-ph

Abstract: For multi-level systems in hot atomic vapors the interplay between the Doppler shift due to atom velocity and the wavenubmer mismatch between driving laser fields strongly influences transmission and absorption properties of the atomic medium. In a three-level atomic ladder-system, Doppler broadening limits the visibility of electromagnetically-induced transparency (EIT) when the probe and control fields are co-propagating, while EIT is recovered under the opposite condition of counter-propagating geometry and $k_{p} < k_{c}$, with $k_{p}$ and $k_{c}$ being the wavenumbers of the probe and control fields, respectively. This effect has been studied and experimentally demonstrated as an efficient mechanism to realize non-reciprocal probe light transmission, opening promising avenues for example for realization of magnetic-field free optical isolators. In this tutorial we discuss the theoretical derivation of this effect and show the underlying mechanism to be an avoided crossing of the states dressed by the coupling laser as a function of atomic velocities when $k_{p}<k_{c}$. We investigate how the non-reciprocity scales with wavelength mismatch and show how to experimentally demonstrate the effect in a simple Rydberg-EIT system using thermal Rubidium atoms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64(10) 1107–1110 URL https://link.aps.org/doi/10.1103/PhysRevLett.64.1107
  2. Boller K J, Imamoğlu A and Harris S E 1991 Phys. Rev. Lett. 66(20) 2593–2596 URL https://link.aps.org/doi/10.1103/PhysRevLett.66.2593
  3. Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84(22) 5094–5097 URL https://link.aps.org/doi/10.1103/PhysRevLett.84.5094
  4. Fleischhauer M and Lukin M D 2002 Phys. Rev. A 65(2) 022314 URL https://link.aps.org/doi/10.1103/PhysRevA.65.022314
  5. Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77(2) 633–673 URL https://link.aps.org/doi/10.1103/RevModPhys.77.633
  6. Dudin Y O, Li L and Kuzmich A 2013 Physical Review A 87 031801 ISSN 1094-1622
  7. Katz O and Firstenberg O 2018 Nature Communications 9 ISSN 2041-1723
  8. Mohapatra A K, Jackson T R and Adams C S 2007 Phys. Rev. Lett. 98(11) 113003 URL https://link.aps.org/doi/10.1103/PhysRevLett.98.113003
  9. Ma L, Anderson D A and Raithel G 2017 Physical Review A 95 061804 ISSN 2469-9934
  10. Meyer D H, Kunz P D and Cox K C 2021 Phys. Rev. Applied 15(1) 014053 URL https://link.aps.org/doi/10.1103/PhysRevApplied.15.014053
  11. Saffman M, Walker T G and Mølmer K 2010 Rev. Mod. Phys. 82(3) 2313–2363 URL https://link.aps.org/doi/10.1103/RevModPhys.82.2313
  12. Dudin Y O and Kuzmich A 2012 Science 336 887–889 URL https://www.science.org/doi/abs/10.1126/science.1217901
  13. Li L, Dudin Y O and Kuzmich A 2013 Nature 498 466–469 URL http://www.nature.com/nature/journal/v498/n7455/full/nature12227.html
  14. Murray C R and Pohl T 2017 Phys. Rev. X 7(3) 031007 URL https://link.aps.org/doi/10.1103/PhysRevX.7.031007
  15. Shepherd S, Fulton D J and Dunn M H 1996 Phys. Rev. A 54(6) 5394–5399 URL https://link.aps.org/doi/10.1103/PhysRevA.54.5394
  16. Vemuri G and Agarwal G S 1996 Physical Review A 53 1060–1064 ISSN 1094-1622
  17. Noh H R and Moon H S 2012 Journal of Physics B: Atomic, Molecular and Optical Physics 45 245002 ISSN 1361-6455 URL https://iopscience.iop.org/article/10.1088/0953-4075/45/24/245002
  18. Li Y q and Xiao M 1995 Physical Review A 51 R2703–R2706 ISSN 1094-1622
  19. Carvalho P R S, de Araujo L E E and Tabosa J W R 2004 Phys. Rev. A 70(6) 063818 URL https://link.aps.org/doi/10.1103/PhysRevA.70.063818
  20. Novikova I, Walsworth R and Xiao Y 2012 Laser & Photonics Reviews 6 333–353 URL https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100021
  21. Kumar M A and Singh S 2009 Physical Review A 79 063821 ISSN 1094-1622
  22. Mirza A B and Singh S 2012 Physical Review A 85 053837 ISSN 1094-1622
  23. Xia K, Nori F and Xiao M 2018 Phys. Rev. Lett. 121(20) 203602 URL https://link.aps.org/doi/10.1103/PhysRevLett.121.203602
  24. Mottola R, Buser G and Treutlein P 2023 Physical Review Letters 131 260801 ISSN 1079-7114 URL https://doi.org/10.1103/PhysRevLett.131.260801
  25. Pritchard J, Weatherill K and Adams C 2013 Annual review of cold atoms and molecules 1 301–350
  26. Chang D E, Vuletic V and Lukin M D 2014 Nature Photonics 8 685–694 URL https://www.nature.com/articles/nphoton.2014.192

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com