Ultimate linear block and convolutional codes (2403.01491v6)
Abstract: Codes considered as structures within unit schemes greatly extends the availability of linear block and convolutional codes and allows the construction of these codes to required length, rate, distance and type. Properties of a code emanate from properties of the unit from which it was derived. Orthogonal units, units in group rings, Fourier/Vandermonde units and related units are used to construct and analyse linear block and convolutional codes and to construct these to predefined length, rate, distance and type. Self-dual, dual containing, quantum error-correcting and linear complementary dual codes are constructed for both linear block and convolutional codes. Low density parity check linear block and convolutional codes are constructed with no short cycles in the control matrix.
- R. J. McEliece, “The algebraic theory of convolutional codes”, in Handbook of Coding Theory, Volume I, North Holland, Elsevier Science, 1998.
- Bocharova, I., Hug, F., Johannesson, R., & Kudryashov, B. (2012). “Dual convolutional codes and the MacWilliams identities”, Problems of Information Transmission, 48(1), 21-30, 2012.
- Almeida, P., Napp, D., Pinto, R., “A new class of superregular matrices and MDP convolutional codes”, Linear Algebra and its Applications, 439 (7), 2145-2157, 2013
- Almeida, P., Napp, D., Pinto, R., “Superregular matrices and applications to convolutional codes”, Linear Algebra and its Applications, 499, 1-25, 2016.
- Guardia, G., “On negacyclic MDS-convolutional codes”, Linear Algebra and its Applications, 448 (Supplement C), 85-96, 2014.
- Muñoz Porras, J., Domínguez Pérez, J., Iglesias Curto J., Serrano Sotelo, G., “ Convolutional Goppa codes”, IEEE Trans. Inf. Th., 52 (1), 340–344, 2006.
- Claude Carlet, Sihem Mesnager, Chunming Tang, Yangeng Qi, “Euclidean and Hermitian LCD MDS codes”, Designs, Codes and Cryptography Vol. 86, no. 11, 2605-2618, 2018. (ArXiv: 1702.08033, 2017.)
- Claude Carlet, Sihem Mesnager, Chunming Tang, Yangeng Qi, Ruud Pelikaan, “Linear codes over Fqsubscript𝐹𝑞F_{q}italic_F start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT are equivalent to LCD codes for q>3𝑞3q>3italic_q > 3 ”, IEEE Transactions on Information Theory, Vol. 64 , no. 4, 3010-3017, 2018.
- Claude Carlet, Sihem Mesnager, Chunming Tang, Yangeng Qi, “New characterization and parametrization of LCD codes”, IEEE Transactions on Information Theory ( Early Access ), 2018. (ArXiv:1709.03217, 2017.)
- Claude Carlet, S. Guilley, “Complementary dual codes for counter measures to side-channel attacks”, In: E.R. Pinto et al (eds) Coding Theory and applications, CIM series in Mathematical Sciences, 3, 97-105, Springer Verlag 2014: and J. Adv. in Math. of Comm., 10(1), 131-150, 2016.
- J. L. Massey, “Linear codes with complementary duals”, Discrete Math., Vol.105/106, 337-380, 1992.
- J. L. Massey, “Reversible codes”, Information and Control, vol. 7, no.3, 369-380, 1964.
- Sihem Mesnager, Chunming Tang, Yanfeng Qi, “Complementary Dual Algebraic Geometry Codes”, IEEE Transactions on Information Theory, Vol 64, 4 , 2018.
- R. Pellikaan, “On decoding by error location and dependent sets of error positions”, Discrete Math., Vol. 106/107, 369-381, 1992.
- A.R. Calderbank, E.M. Rains, P.M. Shor and N.J.A. Sloane. “Quantum error correction via codes over GF(4)𝐺𝐹4GF(4)italic_G italic_F ( 4 )”, IEEE Transactions on Information Theory 44(4), pp. 1369-1387, 1998.
- Andrew M. Steane, “Simple quantum error correcting codes” Physical Review A, 54(6):4741–4751, 1996.
- A. Calderbank and P. Shor,“Good quantum error-correcting codes exist”, Physical Review A, Vol. 54 (2), 1098-1105, 1996.
- T. Hurley, “Linear complementary dual, maximum distance separable codes”, https://arxiv.org/abs/1901.04241
- T. Hurley, D. Hurley, B. Hurley, “Quantum error-correcting codes: the unit-derived strategy”, Intl. J. of Information and Coding Theory, Vol.5 No.2, 169-182, 2018.
- Ted Hurley, “Linear block and convolutional codes to required rate, distance and type”, Intelligent Computing. SAI 2022, pp 129-157, Lecture Notes in Networks and Systems, vol 507. Springer, pp 129-157, 2022.
- Ted Hurley, “Convolutional codes from unit schemes”, ArXiv: 1412.1695, 23 pp., 2014.
- H. Gluesing-Luerssen, U. Helmke, J. I. Iglesias Curto, “Algebraic decoding for doubly cyclic convolutional codes”, arXiv:0908.0753.
- H. Gluesing-Luerssen and G. Schneider, “A MacWilliams identity for convolutional codes: The general case,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 2920–2930, Jul. 2009.
- Ted Hurley, “Maximum distance separable codes to order”, Global J. Science, Frontier Research, Math. & Division Sc., 21 (4), 11-22, 2021. Also https://arxiv.org/abs/1902.06624.
- Ted Hurley, “Group rings and rings of matrices”, Intn. Journal of Pure and Applied Mathematics, Vol.31, No. 3, 319-335, 2006.
- T Hurley, “Solving underdetermined systems with error-correcting codes”, Intl. J. of Information and Coding Theory, Vol. 4, 201-221, 2017.
- Barry Hurley and Ted Hurley, “Systems of MDS codes from units and idempotents”, Discrete Math., 335, 81-91, 2014.
- Ted Hurley, “Convolutional codes from units in matrix and group rings”, Int. J. Pure Appl. Math., 50, no. 3, 431-463, 2009.
- I. McLoughlin and T. Hurley, “A Group Ring Construction of the Extended Binary Golay Code”, in IEEE Transactions on Information Theory, vol. 54, no. 9, pp. 4381-4383, Sept. 2008.
- J. Rosenthal & R. Smarandache, “Maximum distance separable convolutional codes”, Appl. Algebra Engrg. Comm. Comput. 10 (1), 15-32, 1999.
- Rosenthal, J., “Connections between linear systems and convolutional codes”, pp. 39-66 in: Marcus, B; Rosenthal, J. Codes, systems, and graphical models, Minneapolis, New York, 1999.
- J. Rosenthal, “ An algebraic decoding algorithm for convolutional codes”, in G. Picci and D.S. Gilliam, editors, Dynamical Systems, Control, Coding, Computer Vision: New Trends, Interfaces, and Interplay, pages 343-360. Birkhäuser, Boston-Basel-Berlin, 1999.
- Paul Hurley and Ted Hurley, “Module codes in group rings”, Proc. IEEE Int. Symp. Inform. Theory, Nice, pp 1981-1985, 2007.
- Paul Hurley and Ted Hurley, “Codes from zero-divisors and units in group rings”, Int. J. Inform. and Coding Theory, 1, 57-87, 2009.
- Paul Hurley and Ted Hurley, “Block codes from matrix and group rings”, Chapter 5, 159-194, in Selected Topics in Information and Coding Theory eds. I. Woungang, S. Misra, S.C. Misma, World Scientific 2010.
- Paul Hurley and Ted Hurley, “LDPC and convolutional codes from matrix and group rings”, Chapter 6, 195-239, in Selected Topics in Information and Coding Theory eds. I. Woungang, S. Misra, S.C. Misma, World Scientific 2010.
- T. Hurley, “Convolutional codes from unit schemes”, ArXiv 1412.1695; revised 2020.
- T. Hurley, D. Hurley, “Coding theory: the unit-derived methodology”, Intl. J. of Information and Coding Theory, 5(1), 55-80, 2018.
- Ted Hurley, Paul McEvoy and Jakub Wenus, “Algebraic constructions of LDPC codes with no short cycles”, Intl. J. of Inform. and Coding Theory, Vol 1, Issue 3, 285-297, 2010.
- R. Smarandache, H. Gluesing-Luerssen, J. Rosenthal, “Constructions for MDS-convolutional codes”, IEEE Trans. Inform. Theory, vol. IT-47, 2045-2049, 2001.