Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Depth Estimation Algorithm Based on Transformer-Encoder and Feature Fusion (2403.01370v1)

Published 3 Mar 2024 in cs.CV

Abstract: This research presents a novel depth estimation algorithm based on a Transformer-encoder architecture, tailored for the NYU and KITTI Depth Dataset. This research adopts a transformer model, initially renowned for its success in natural language processing, to capture intricate spatial relationships in visual data for depth estimation tasks. A significant innovation of the research is the integration of a composite loss function that combines Structural Similarity Index Measure (SSIM) with Mean Squared Error (MSE). This combined loss function is designed to ensure the structural integrity of the predicted depth maps relative to the original images (via SSIM) while minimizing pixel-wise estimation errors (via MSE). This research approach addresses the challenges of over-smoothing often seen in MSE-based losses and enhances the model's ability to predict depth maps that are not only accurate but also maintain structural coherence with the input images. Through rigorous training and evaluation using the NYU Depth Dataset, the model demonstrates superior performance, marking a significant advancement in single-image depth estimation, particularly in complex indoor and traffic environments.

Summary

We haven't generated a summary for this paper yet.