Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Integrated Task and Path Planning and Its Application to Multi-Robot Pickup and Delivery (2403.01277v1)

Published 2 Mar 2024 in cs.RO, cs.AI, and cs.MA

Abstract: We propose a generic multi-robot planning mechanism that combines an optimal task planner and an optimal path planner to provide a scalable solution for complex multi-robot planning problems. The Integrated planner, through the interaction of the task planner and the path planner, produces optimal collision-free trajectories for the robots. We illustrate our general algorithm on an object pick-and-drop planning problem in a warehouse scenario where a group of robots is entrusted with moving objects from one location to another in the workspace. We solve the task planning problem by reducing it into an SMT-solving problem and employing the highly advanced SMT solver Z3 to solve it. To generate collision-free movement of the robots, we extend the state-of-the-art algorithm Conflict Based Search with Precedence Constraints with several domain-specific constraints. We evaluate our integrated task and path planner extensively on various instances of the object pick-and-drop planning problem and compare its performance with a state-of-the-art multi-robot classical planner. Experimental results demonstrate that our planning mechanism can deal with complex planning problems and outperforms a state-of-the-art classical planner both in terms of computation time and the quality of the generated plan.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. M. Crosby, M. Rovatsos, and R. P. A. Petrick, “Automated agent decomposition for classical planning,” in ICAPS, vol. 23, 2013, pp. 46–54.
  2. I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia, “Automated composition of motion primitives for multi-robot systems from safe LTL specifications,” in IROS, 2014, pp. 1525–1532.
  3. W. Hönig, S. Kiesel, A. Tinka, J. Durham, and N. Ayanian, “Conflict-based search with optimal task assignment,” in AAMAS, 2018, pp. 757–765.
  4. I. Gavran, R. Majumdar, and I. Saha, “Antlab: A multi-robot task server,” ACM Trans. Embedded Comput. Syst., vol. 16, no. 5, pp. 190:1–190:19, 2017.
  5. Aakash and I. Saha, “It costs to get costs! a heuristic-based scalable goal assignment algorithm for multi-robot systems,” in ICAPS, vol. 32, 2022, pp. 2–10.
  6. M. Turpin, N. Michael, and V. Kumar, “Trajectory planning and assignment in multirobot systems,” in Algorithmic Foundations of Robotics, 2013, pp. 175–190.
  7. D. Hennes, D. Claes, W. Meeussen, and K. Tuyls, “Multi-robot collision avoidance with localization uncertainty,” in AAMAS, 2012, pp. 147–154.
  8. M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-agent pickup and delivery,” in AAMAS, 2019, pp. 1152–1160.
  9. L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS, 2008, pp. 337–340.
  10. H. Zhang, J. Chen, J. Li, B. C. Williams, and S. Koenig, “Multi-agent path finding for precedence-constrained goal sequences,” in AAAMS, 2022, pp. 1464–1472.
  11. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  12. F. Grenouilleau, W.-J. van Hoeve, and J. N. Hooker, “A multi-label A* algorithm for multi-agent pathfinding,” in ICAPS, vol. 29, 2019, pp. 181–185.
  13. E. Scala, P. Haslum, S. Thiébaux, and M. Ramirez, “Subgoaling techniques for satisficing and optimal numeric planning,” JAIR, vol. 68, pp. 691–752, 2020.
  14. K. Helsgaun, “An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman and vehicle routing problems,” Roskilde: Roskilde University, vol. 12, 2017.
  15. D. L. Kovacs, “A multi-agent extension of PDDL3.1,” in ICAPS, 2012, pp. 19–27.
  16. F. Leofante, E. Ábrahám, T. Niemueller, G. Lakemeyer, and A. Tacchella, “On the synthesis of guaranteed-quality plans for robot fleets in logistics scenarios via optimization modulo theories,” in IEEE IRI, 2017, pp. 403–410.
  17. G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,” in IROS, 2011, pp. 3260–3267.
  18. G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based search for optimal multi-agent pathfinding,” Artif. Intell., vol. 219, pp. 40–66, 2015.
  19. I. Saha, R. Ramaithitima, V. Kumar, G. J. Pappas, and S. A. Seshia, “Implan: Scalable incremental motion planning for multi-robot systems,” in ICCPS, 2016, pp. 43:1–43:10.
  20. M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment and planning of trajectories for multiple robots,” I. J. Robotics Res., vol. 33, no. 1, pp. 98–112, 2014.
  21. M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment and trajectory planning for large teams of interchangeable robots,” Auton. Robots, vol. 37, no. 4, pp. 401–415, 2014.
  22. H. Ma and S. Koenig, “Optimal target assignment and path finding for teams of agents,” in AAMAS, 2016, pp. 1144–1152.
  23. K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochenderfer, “Optimal sequential task assignment and path finding for multi-agent robotic assembly planning,” in ICRA, 2020, pp. 441–447.
  24. H. Ma, C. A. Tovey, G. Sharon, T. K. S. Kumar, and S. Koenig, “Multi-agent path finding with payload transfers and the package-exchange robot-routing problem,” in AAAI, 2016, pp. 3166–3173.
  25. H. Ma, G. Wagner, A. Felner, J. Li, T. K. S. Kumar, and S. Koenig, “Multi-agent path finding with deadlines,” in IJCAI, 2018, pp. 417–423.
  26. A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality and robustness in multi-robot path planning with temporal logic constraints,” I. J. Robotics Res., vol. 32, no. 8, pp. 889–911, 2013.
  27. Y. Kantaros and M. M. Zavlanos, “Stylus**{}^{\mbox{*}}start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT: A temporal logic optimal control synthesis algorithm for large-scale multi-robot systems,” Int. J. Robotics Res., vol. 39, no. 7, 2020.
  28. D. Gujarathi and I. Saha, “MT*: multi-robot path planning for temporal logic specifications,” in IROS, 2022, pp. 13 692–13 699.
  29. M. Čáp, J. Vokřínek, and A. Kleiner, “Complete decentralized method for on-line multi-robot trajectory planning in well-formed infrastructures,” in ICAPS, 2015, pp. 324–332.
  30. H. Ma, J. Li, T. K. S. Kumar, and S. Koenig, “Lifelong multi-agent path finding for online pickup and delivery tasks,” in AAMAS, 2017, pp. 837–845.
  31. Q. Xu, J. Li, S. Koenig, and H. Ma, “Multi-goal multi-agent pickup and delivery,” in IROS, 2022, pp. 9964–9971.
  32. Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey, “Integrated task assignment and path planning for capacitated multi-agent pickup and delivery,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5816–5823, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.