Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth Computation without Input Delay: Robust Tube-Based Model Predictive Control for Robot Manipulator Planning (2403.01265v3)

Published 2 Mar 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Model Predictive Control (MPC) has exhibited remarkable capabilities in optimizing objectives and meeting constraints. However, the substantial computational burden associated with solving the Optimal Control Problem (OCP) at each triggering instant introduces significant delays between state sampling and control application. These delays limit the practicality of MPC in resource-constrained systems when engaging in complex tasks. The intuition to address this issue in this paper is that by predicting the successor state, the controller can solve the OCP one time step ahead of time thus avoiding the delay of the next action. To this end, we compute deviations between real and nominal system states, predicting forthcoming real states as initial conditions for the imminent OCP solution. Anticipatory computation stores optimal control based on current nominal states, thus mitigating the delay effects. Additionally, we establish an upper bound for linearization error, effectively linearizing the nonlinear system, reducing OCP complexity, and enhancing response speed. We provide empirical validation through two numerical simulations and corresponding real-world robot tasks, demonstrating significant performance improvements and augmented response speed (up to $90\%$) resulting from the seamless integration of our proposed approach compared to conventional time-triggered MPC strategies.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. T. Lozano-Perez, “A simple motion-planning algorithm for general robot manipulators,” IEEE Journal on Robotics and Automation, vol. 3, no. 3, pp. 224–238, 1987.
  2. J. Zhu, B. Navarro, R. Passama, P. Fraisse, A. Crosnier, and A. Cherubini, “Robotic manipulation planning for shaping deformable linear objects withenvironmental contacts,” IEEE Robotics and Automation Letters, vol. 5, no. 1, pp. 16–23, 2019.
  3. A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science, vol. 364, no. 6446, p. eaat8414, 2019.
  4. D. Guo, Z. Li, A. H. Khan, Q. Feng, and J. Cai, “Repetitive motion planning of robotic manipulators with guaranteed precision,” IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 356–366, 2020.
  5. D. Wang, Q. Pan, Y. Shi, J. Hu, and C. Zhao, “Efficient nonlinear model predictive control for quadrotor trajectory tracking: Algorithms and experiment,” IEEE Transactions on Cybernetics, vol. 51, no. 10, pp. 5057–5068, 2021.
  6. Y. Ding, A. Pandala, C. Li, Y.-H. Shin, and H.-W. Park, “Representation-free model predictive control for dynamic motions in quadrupeds,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1154–1171, 2021.
  7. M. Omer, R. Ahmed, B. Rosman, and S. F. Babikir, “Model predictive-actor critic reinforcement learning for dexterous manipulation,” in 2020 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE).   IEEE, 2021, pp. 1–6.
  8. L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-based model predictive control: Toward safe learning in control,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 3, pp. 269–296, 2020.
  9. D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Automatica, vol. 50, no. 12, pp. 2967 – 2986, 2014.
  10. T. Samad, M. Bauer, S. Bortoff, S. D. Cairano, and R. Sosseh, “Industry engagement with control research: Perspective and messages,” Annual Reviews in Control, vol. 49, pp. 1–14, 2020.
  11. S. Vazquez, J. Rodriguez, M. Rivera, L. G. Franquelo, and M. Norambuena, “Model predictive control for power converters and drives: Advances and trends,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 935 – 947, 2016.
  12. M. Brunner, K. Bodie, M. Kamel, M. Pantic, W. Zhang, J. I. Nieto, and R. Siegwart, “Trajectory tracking nonlinear model predictive control for an overactuated MAV,” in 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020.   IEEE, 2020, pp. 5342–5348.
  13. E. Hannigan, B. Song, G. Khandate, M. Haas-Heger, J. Yin, and M. T. Ciocarlie, “Automatic snake gait generation using model predictive control,” in 2020 IEEE International Conference on Robotics and Automation, ICRA 2020, Paris, France, May 31 - August 31, 2020.   IEEE, 2020, pp. 5101–5107.
  14. D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control,” arXiv preprint arXiv:1909.06586, 2019.
  15. M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: An engineering perspective,” The International Journal of Advanced Manufacturing Technology, vol. 117, no. 5-6, pp. 1327–1349, 2021.
  16. W. Han and R. Tedrake, “Local trajectory stabilization for dexterous manipulation via piecewise affine approximations,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 8884–8891.
  17. D. W. Griffith, L. T. Biegler, and S. C. Patwardhan, “Robustly stable adaptive horizon nonlinear model predictive control,” Journal of Process Control, vol. 70, pp. 109 – 122, 2018.
  18. P. Li, Y. Kang, Y. Zhao, and T. Wang, “Networked dual-mode adaptive horizon mpc for constrained nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, pp. 1–15, 2020.
  19. H. Li and Y. Shi, “Event-triggered robust model predictive control of continuous-time nonlinear systems,” Automatica, vol. 50, no. 5, pp. 1507–1513, 2014.
  20. C. Liu, J. Gao, H. Li, and D. Xu, “Aperiodic robust model predictive control for constrained continuous-time nonlinear systems: An event-triggered approach,” IEEE Transactions on Cybernetics, vol. 48, no. 5, pp. 1397–1405, 2018.
  21. B. Zhao and D. Liu, “Event-triggered decentralized tracking control of modular reconfigurable robots through adaptive dynamic programming,” IEEE Transactions on Industrial Electronics, vol. 67, no. 4, pp. 3054–3064, 2019.
  22. J. Fei and L. Liu, “Real-time nonlinear model predictive control of active power filter using self-feedback recurrent fuzzy neural network estimator,” IEEE Transactions on Industrial Electronics, vol. 69, no. 8, pp. 8366–8376, 2021.
  23. S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti, “High-frequency nonlinear model predictive control of a manipulator,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 7330–7336.
  24. B. Faverjon and P. Tournassoud, “A local based approach for path planning of manipulators with a high number of degrees of freedom,” in Proceedings. 1987 IEEE international conference on robotics and automation, vol. 4.   IEEE, 1987, pp. 1152–1159.
  25. J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-time robot motion planning using rasterizing computer graphics hardware,” ACM Siggraph Computer Graphics, vol. 24, no. 4, pp. 327–335, 1990.
  26. C. Zhou, B. Huang, and P. Fränti, “A review of motion planning algorithms for intelligent robots,” Journal of Intelligent Manufacturing, vol. 33, no. 2, pp. 387–424, 2022.
  27. S. Rodriguez, X. Tang, J.-M. Lien, and N. M. Amato, “An obstacle-based rapidly-exploring random tree,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.   IEEE, 2006, pp. 895–900.
  28. P. E. Missiuro and N. Roy, “Adapting probabilistic roadmaps to handle uncertain maps,” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.   IEEE, 2006, pp. 1261–1267.
  29. T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic roadmaps for motion planning,” Advanced Robotics, vol. 14, no. 6, pp. 477–493, 2000.
  30. A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning networks: Bridging the gap between learning-based and classical motion planners,” IEEE Transactions on Robotics, vol. 37, no. 1, pp. 48–66, 2020.
  31. Z. Xu, X. Zhou, H. Wu, X. Li, and S. Li, “Motion planning of manipulators for simultaneous obstacle avoidance and target tracking: An rnn approach with guaranteed performance,” IEEE Transactions on Industrial Electronics, vol. 69, no. 4, pp. 3887–3897, 2021.
  32. T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Pérez, and L. P. Kaelbling, “Planning with learned object importance in large problem instances using graph neural networks,” in Proceedings of the AAAI conference on artificial intelligence, vol. 35, no. 13, 2021, pp. 11 962–11 971.
  33. M. Cai, M. Hasanbeig, S. Xiao, A. Abate, and Z. Kan, “Modular deep reinforcement learning for continuous motion planning with temporal logic,” IEEE robotics and automation letters, vol. 6, no. 4, pp. 7973–7980, 2021.
  34. J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning can accelerate grasp-optimized motion planning,” Science Robotics, vol. 5, no. 48, p. eabd7710, 2020.
  35. H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205–1217, 1998.
  36. Y. Luo, Y. Xia, and Z. Sun, “Robust event-triggered model predictive control for constrained linear continuous system,” International Journal of Robust and Nonlinear Control, vol. 29, no. 5, pp. 1216–1229, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com